Esempio n. 1
0
  def __init__(self, filename):

    from math import pi
    from dials.model.serialize import load
    from dials.algorithms.profile_model.gaussian_rs.transform import MapFramesReverse
    from dials.algorithms.profile_model.gaussian_rs.transform import MapFramesForward
    from dials.algorithms.profile_model.gaussian_rs import BBoxCalculator3D

    # Load the sweep
    self.sweep = load.sweep(filename)

    # Get the models
    self.beam = self.sweep.get_beam()
    self.detector = self.sweep.get_detector()
    self.gonio = self.sweep.get_goniometer()
    self.scan = self.sweep.get_scan()

    # Set the delta_divergence/mosaicity
    self.n_sigma = 3
    self.sigma_divergence = 0.060 * pi / 180
    self.mosaicity = 0.154 * pi / 180
    self.delta_divergence = self.n_sigma * self.sigma_divergence
    self.delta_mosaicity = self.n_sigma * self.mosaicity

    # Set the grid size
    self.grid_size = (4, 4, 4)

    # Create the E3 fraction object
    self.transform_forward = MapFramesForward(
        self.scan.get_array_range()[0],
        self.scan.get_oscillation(deg=False)[0],
        self.scan.get_oscillation(deg=False)[1],
        self.mosaicity,
        self.n_sigma,
        self.grid_size[2])

    # Create the E3 fraction object
    self.transform_reverse = MapFramesReverse(
        self.scan.get_array_range()[0],
        self.scan.get_oscillation(deg=False)[0],
        self.scan.get_oscillation(deg=False)[1],
        self.mosaicity,
        self.n_sigma,
        self.grid_size[2])

    # Create the bounding box calculator
    self.calculate_bbox = BBoxCalculator3D(
        self.beam, self.detector, self.gonio, self.scan,
        self.delta_divergence,
        self.delta_mosaicity)
Esempio n. 2
0
def test_map_forward_reverse(dials_data):
    sequence = load.imageset(
        dials_data("centroid_test_data").join("sweep.json").strpath)

    # Get the models
    beam = sequence.get_beam()
    detector = sequence.get_detector()
    gonio = sequence.get_goniometer()
    scan = sequence.get_scan()

    # Set the delta_divergence/mosaicity
    n_sigma = 3
    sigma_divergence = 0.060 * math.pi / 180
    mosaicity = 0.154 * math.pi / 180
    delta_divergence = n_sigma * sigma_divergence
    delta_mosaicity = n_sigma * mosaicity

    # Set the grid size
    grid_size = (4, 4, 4)

    # Create the E3 fraction object
    transform_forward = MapFramesForward(
        scan.get_array_range()[0],
        scan.get_oscillation(deg=False)[0],
        scan.get_oscillation(deg=False)[1],
        mosaicity,
        n_sigma,
        grid_size[2],
    )

    # Create the E3 fraction object
    transform_reverse = MapFramesReverse(
        scan.get_array_range()[0],
        scan.get_oscillation(deg=False)[0],
        scan.get_oscillation(deg=False)[1],
        mosaicity,
        n_sigma,
        grid_size[2],
    )

    # Create the bounding box calculator
    calculate_bbox = BBoxCalculator3D(beam, detector, gonio, scan,
                                      delta_divergence, delta_mosaicity)

    s0 = beam.get_s0()
    m2 = gonio.get_rotation_axis()
    s0_length = matrix.col(beam.get_s0()).length()

    for i in range(100):

        # Get random x, y, z
        x = random.uniform(0, 2000)
        y = random.uniform(0, 2000)
        z = random.uniform(0, 9)

        # Get random s1, phi, panel
        s1 = matrix.col(detector[0].get_pixel_lab_coord(
            (x, y))).normalize() * s0_length
        phi = scan.get_angle_from_array_index(z, deg=False)
        panel = 0

        # Calculate the bounding box
        bbox = calculate_bbox(s1, phi, panel)

        # Create the XDS coordinate system
        xcs = CoordinateSystem(m2, s0, s1, phi)

        # Calculate the transform fraction
        forward_fraction = transform_forward(bbox[4:], phi, xcs.zeta())

        # Calculate the transform fraction
        reverse_fraction = transform_reverse(bbox[4:], phi, xcs.zeta())

        # Check the same points are non-zero
        eps = 1e-7
        for j in range(forward_fraction.all()[0]):
            for i in range(forward_fraction.all()[1]):
                if forward_fraction[j, i] > 0.0:
                    assert reverse_fraction[i, j] > 0.0
                else:
                    assert reverse_fraction[i, j] < eps
Esempio n. 3
0
def test_map_frames_forward(dials_data):
    sequence = load.imageset(
        dials_data("centroid_test_data").join("sweep.json").strpath)

    # Get the models
    beam = sequence.get_beam()
    detector = sequence.get_detector()
    gonio = sequence.get_goniometer()
    scan = sequence.get_scan()

    # Set the delta_divergence/mosaicity
    n_sigma = 3
    sigma_divergence = 0.060 * math.pi / 180
    mosaicity = 0.154 * math.pi / 180
    delta_divergence = n_sigma * sigma_divergence
    delta_mosaicity = n_sigma * mosaicity

    # Set the grid size
    grid_size = (4, 4, 4)

    # Create the E3 fraction object
    transform = MapFramesForward(
        scan.get_array_range()[0],
        scan.get_oscillation(deg=False)[0],
        scan.get_oscillation(deg=False)[1],
        mosaicity,
        n_sigma,
        grid_size[2],
    )

    # Create the bounding box calculator
    calculate_bbox = BBoxCalculator3D(beam, detector, gonio, scan,
                                      delta_divergence, delta_mosaicity)

    assert len(detector) == 1
    s0 = beam.get_s0()
    m2 = gonio.get_rotation_axis()
    s0_length = matrix.col(beam.get_s0()).length()

    for i in range(100):

        # Get random x, y, z
        x = random.uniform(0, 2000)
        y = random.uniform(0, 2000)
        z = random.uniform(0, 9)

        # Get random s1, phi, panel
        s1 = matrix.col(detector[0].get_pixel_lab_coord(
            (x, y))).normalize() * s0_length
        phi = scan.get_angle_from_array_index(z, deg=False)
        panel = 0

        # Calculate the bounding box
        bbox = calculate_bbox(s1, z, panel)

        # Create the XDS coordinate system
        xcs = CoordinateSystem(m2, s0, s1, phi)

        # Calculate the transform fraction
        fraction = transform(bbox[4:], phi, xcs.zeta())

        # Ensure the minimum and maximum are 0 < 1
        fmax = flex.max(fraction)
        fmin = flex.min(fraction)
        assert fmax <= (
            1.0 + 5e-15) and fmax > 0.0, f"{fmax:.16f} not between 0 and 1"
        assert fmin >= 0.0 and fmin <= 1.0

        # Ensure the fraction for each image frame adds up to 1.0 for
        # all those frames completely within the grid
        for j in range(1, fraction.all()[0] - 1):
            tot = flex.sum(fraction[j:j + 1, :])
            assert abs(tot - 1.0) < 1e-7

        # Ensure the frames follow a progression through the grid. I.e,
        # check that values increase then decrease and don't jump around
        for j in range(fraction.all()[0]):
            f = fraction[j:j + 1, :]
            last = f[0]
            rev = False
            for i in range(1, len(f)):
                curr = f[1]
                if rev is False:
                    if curr < last:
                        rev = True
                else:
                    assert curr <= last
                last = curr