Esempio n. 1
0
 def compute_mu_bar(b1, b2, b3, b4, b5, b6):
     model = SimpleMosaicityParameterisation((b1, b2, b3, b4, b5, b6))
     sigma = model.sigma()
     sigmap = R * sigma * R.transpose()
     sigma11 = matrix.sqr((sigmap[0], sigmap[1], sigmap[3], sigmap[4]))
     sigma12 = matrix.col((sigmap[2], sigmap[5]))
     sigma21 = matrix.col((sigmap[6], sigmap[7])).transpose()
     sigma22 = sigmap[8]
     return sigma12 * (1 / sigma22) * epsilon
Esempio n. 2
0
    def compute_L(b1, b2, b3, b4, b5, b6):
        model = SimpleMosaicityParameterisation((b1, b2, b3, b4, b5, b6))
        sigma = model.sigma()
        sigmap = R * sigma * R.transpose()
        sigma11 = matrix.sqr((sigmap[0], sigmap[1], sigmap[3], sigmap[4]))
        sigma12 = matrix.col((sigmap[2], sigmap[5]))
        sigma21 = matrix.col((sigmap[6], sigmap[7])).transpose()
        sigma22 = sigmap[8]

        z = s0.length()
        mubar = sigma12 * (1 / sigma22) * (z - mu2)
        sigma_bar = sigma11 - sigma12 * (1 / sigma22) * sigma21

        d = r - mu2
        c_d = mubar - mobs
        A = log(sigma22)
        B = (1 / sigma22) * d**2
        C = log(sigma_bar.determinant()) * ctot
        D = (sigma_bar.inverse() * ctot * Sobs).trace()
        E = (sigma_bar.inverse() * ctot * c_d * c_d.transpose()).trace()
        return -0.5 * (A + B + C + D + E)
def tst_ml_target_class_2():

    numpy.random.seed(100)

    # The beam vector
    s0 = matrix.col((0, 0, 1))

    # The covariance matrix
    sigma = matrix.sqr((1e-6, 0, 0, 0, 2e-6, 0, 0, 0, 3e-6))

    # The number of reflections
    N = 100

    # Generate a load of reflections
    s2_list, ctot_list, xbar_list, Sobs_list = generate_simple(s0, sigma, N=N)

    Sobs_list = flex.double(Sobs_list)

    parameterisation = SimpleMosaicityParameterisation((1, 0, 1, 0, 0, 1))

    data = ProfileRefinerData(s0, s2_list, ctot_list, xbar_list, Sobs_list)
    refiner = ProfileRefiner(parameterisation, data)
    ml = refiner.refine()
    params = refiner.parameters

    # Create the covariance matrix
    M = matrix.sqr((params[0], 0, 0, params[1], params[2], 0, params[3],
                    params[4], params[5]))
    sigma = M * M.transpose()

    # print sigma

    expected = matrix.sqr((
        9.91048657253e-07,
        -1.9828296735e-09,
        2.25787032072e-09,
        -1.9828296735e-09,
        1.98334108426e-06,
        1.88097904832e-08,
        2.25787032072e-09,
        1.88097904832e-08,
        2.99884748097e-06,
    ))

    assert all(1e6 * abs(a - b) < 1e-7 for a, b in zip(sigma, expected))

    print("OK")
Esempio n. 4
0
def generate_data(experiments, reflections):

    from random import seed

    seed(0)

    index = randint(0, len(reflections))

    h = reflections[index]["miller_index"]

    s0 = matrix.col(experiments[0].beam.get_s0())

    U_param = CrystalOrientationParameterisation(experiments[0].crystal)
    B_param = CrystalUnitCellParameterisation(experiments[0].crystal)

    U = matrix.sqr(experiments[0].crystal.get_U())
    B = matrix.sqr(experiments[0].crystal.get_B())
    r = U * B * matrix.col(h)
    s2 = s0 + r
    mobs = (s2 + matrix.col((uniform(0, 1e-3), uniform(
        0, 1e-3), uniform(0, 1e-3)))).normalize() * s0.length()

    b1, b2, b3, b4, b5, b6 = (
        uniform(1e-3, 3e-3),
        uniform(0.0, 1e-3),
        uniform(1e-3, 3e-3),
        uniform(0.0, 1e-3),
        uniform(0.0, 1e-3),
        uniform(1e-3, 3e-3),
    )

    params = (b1, b2, b3, b4, b5, b6)

    S_param = SimpleMosaicityParameterisation(params)
    L_param = (uniform(1e-3, 2e-3), )
    W_param = (uniform(1e-3, 2e-3), uniform(0, 1e-3), uniform(1e-3, 2e-3))
    ctot = randint(100, 1000)

    T = matrix.sqr(
        (uniform(1e-3, 2e-3), 0, uniform(1e-6, 2e-6), uniform(1e-3, 2e-3)))
    Sobs = T * T.transpose()

    params = [S_param, U_param, B_param, L_param, W_param]

    return params, s0, h, ctot, mobs, Sobs
        def target(self, params):

            parameterisation = SimpleMosaicityParameterisation(params)

            t = MaximumLikelihoodTarget(
                parameterisation,
                self.s0,
                self.s2_list,
                self.ctot_list,
                self.xbar_list,
                self.Sobs_list,
            )

            lnL = t.log_likelihood()

            # print tuple(parameterisation.sigma()), lnL

            return -lnL
Esempio n. 6
0
def test():

    for i in range(10):

        (b1, b2, b3, b4, b5, b6), s0, s2, ctot, mobs, Sobs = generate_data()

        parameterisation = SimpleMosaicityParameterisation(
            (b1, b2, b3, b4, b5, b6))
        reflection_model = ReflectionData(parameterisation,
                                          s0,
                                          s2,
                                          ctot,
                                          mobs,
                                          Sobs,
                                          second_derivatives=True)

        test_first_derivatives(reflection_model)
        test_second_derivatives(reflection_model)

        print("OK")
Esempio n. 7
0
def run():
    # np.random.seed(1)
    # seed(1)

    # The number of times to run each experiment
    m = 10

    # The results
    results = defaultdict(list)

    # Generate a covariance matrix
    print("Generating covariance matrix")
    sigma = generate_sigma()

    # Repeat the experiment m times
    for i in range(m):

        # Set the beam vector
        s0 = matrix.col((0, 0, 1))
        # sigma = matrix.sqr((2.7e-05, -2.33e-05, -1.26e-06,
        #                     -2.33e-05, 6.08e-05, -1.01e-05,
        #                     -1.26e-06, -1.01e-05, 4.41e-05))
        print("Known Sigma")
        print("( %.3g, %.3g, %.3g, %.3g, %.3g, %.3g, %.3g, %.3g, %.3g, )" %
              tuple(sigma))

        # Generate some samples
        print("Generating samples")
        samples = list(zip(*generate_simple(s0, sigma, 1000)))

        # Iterate over the number of samples to use (logarithmically between 10 and
        # 1000).
        # A = log(10)
        # B = log(1001)
        # N = (B - A) / 10.0
        # for t in np.arange(A, log(1001), N):
        #   n = int(floor(exp(t)))
        # N_list = [900]
        N_list = list(range(3, 20))
        N_list = (list(range(3, 20)) + list(range(20, 200, 10)) +
                  list(range(200, 1000, 100)))
        for n in N_list:

            # Select a sample
            print("Selecting %d samples" % n)
            subsample = sample(samples, n)

            # Estimate the parameters
            print("Estimating parameters")
            s2_list, ctot_list, mobs_list, Sobs_list = zip(*subsample)
            Sobs_list = flex.double(Sobs_list)
            refiner = ProfileRefiner(
                SimpleMosaicityParameterisation((1, 0, 1, 0, 0, 1)),
                ProfileRefinerData(s0, s2_list, ctot_list, mobs_list,
                                   Sobs_list),
            )
            refiner.refine()
            params = refiner.parameters

            # Compute sigma from the parameters
            M = matrix.sqr((
                params[0],
                0,
                0,
                params[1],
                params[2],
                0,
                params[3],
                params[4],
                params[5],
            ))
            sigma_cal = M * M.transpose()

            # Compute the KL divergence
            kl = kl_divergence(sigma, sigma_cal)

            print("Calculated Sigma")
            print("( %.3g, %.3g, %.3g, %.3g, %.3g, %.3g, %.3g, %.3g, %.3g, )" %
                  tuple(sigma_cal))
            print(n, kl)
            print("")

            results[n].append(kl)

        print("Known Sigma")
        print("( %.3g, %.3g, %.3g, %.3g, %.3g, %.3g, %.3g, %.3g, %.3g, )" %
              tuple(sigma))

    with open("result.txt", "w") as outfile:
        for n in sorted(results.keys()):
            print("%d %.6f" % (n, sum(results[n]) / len(results[n])),
                  file=outfile)
def tst_binned():

    numpy.random.seed(100)

    # Ensure we have a data block
    experiments = ExperimentListFactory.from_json_file("experiments.json")
    experiments[0].scan.set_oscillation((0, 1.0), deg=True)
    experiments[0].beam.set_s0((0, 0, -1))

    s0 = matrix.col(experiments[0].beam.get_s0())

    # The predicted reflections
    reflections = flex.reflection_table.from_predictions_multi(experiments,
                                                               padding=4)
    print(len(reflections))

    sigma = matrix.sqr((1e-6, 0, 0, 0, 2e-6, 0, 0, 0, 3e-6))

    reflections = generate_observations2(experiments, reflections, sigma)

    s2_list, ctot_list, xbar_list, Sobs_list = generate_from_reflections_binned(
        s0, sigma, reflections)

    index = sample(range(len(s2_list)), 200)

    def select_sample(d, index):
        return [d[i] for i in index]

    s2_list = select_sample(s2_list, index)
    ctot_list = select_sample(ctot_list, index)
    xbar_list = select_sample(xbar_list, index)
    Sobs_list = select_sample(Sobs_list, index)

    print("Using %d reflections: " % len(s2_list))

    values = flex.double((sqrt(1e-6), 0, sqrt(2e-6), 0, 0, sqrt(3e-6)))
    offset = flex.double([sqrt(1e-7) for v in values])

    parameterisation = SimpleMosaicityParameterisation((1, 0, 1, 0, 0, 1))
    Sobs_list = flex.double(Sobs_list)
    data = ProfileRefinerData(s0, s2_list, ctot_list, xbar_list, Sobs_list)
    refiner = ProfileRefiner(parameterisation, data)
    ml = refiner.refine()
    params = refiner.parameters
    # optimizer = SimpleSimplex(
    #   values,
    #   offset,
    #   Target(
    #     s0,
    #     s2_list,
    #     xbar_list,
    #     ctot_list,
    #     Sobs_list,
    #     test=0), 2000)
    # params = optimizer.get_solution()

    M = matrix.sqr((params[0], 0, 0, params[1], params[2], 0, params[3],
                    params[4], params[5]))

    sigma = M * M.transpose()
    print(sigma)

    expected = matrix.sqr((
        1.07025484551e-06,
        1.30518861783e-09,
        -1.72635922351e-09,
        1.30518861783e-09,
        2.10252906788e-06,
        -1.64646310672e-08,
        -1.72635922351e-09,
        -1.64646310672e-08,
        3.12149393966e-06,
    ))
    assert all(1e6 * abs(a - b) < 1e-7 for a, b in zip(sigma, expected))

    print("OK")
Esempio n. 9
0
 def compute_sigma22(b1, b2, b3, b4, b5, b6):
     model = SimpleMosaicityParameterisation((b1, b2, b3, b4, b5, b6))
     sigma = model.sigma()
     sigmap = R * sigma * R.transpose()
     sigma22 = sigmap[8]
     return sigma22