Esempio n. 1
0
def callback_distance(loc):
    ii, iter_offset = loc['ii'], loc['iter_offset']
    n_batches = loc['n_batches']
    if np.mod((ii-iter_offset)/int(n_batches), n_iter) == 0:
        # Compute distance only every 5 iterations, as in previous case
        d = loc['dict_obj']
        d.wasserstein.append(emd(loc['dictionary'], d.generating_dict, 
                                 'chordal', scale=True))
        d.detection_rate.append(detectionRate(loc['dictionary'],
                                              d.generating_dict, 0.99))
        d.objective_error.append(loc['current_cost']) 
Esempio n. 2
0
#     dict_init[i] /= norm(dict_init[i], 'fro')
dict_init = None
    
learned_dict = MiniBatchMultivariateDictLearning(n_kernels=n_kernels, 
                                batch_size=batch_size, n_iter=n_iter,
                                n_nonzero_coefs=n_nonzero_coefs,
                                n_jobs=n_jobs, learning_rate=learning_rate,
                                kernel_init_len=kernel_init_len, verbose=1,
                                dict_init=dict_init, random_state=rng_global)

# Update learned dictionary at each iteration and compute a distance
# with the generating dictionary
for i in range(max_iter):
    learned_dict = learned_dict.partial_fit(X)
    # Compute the detection rate
    detection_rate.append(detectionRate(learned_dict.kernels_,
                                        generating_dict, 0.99))
    # Compute the Wasserstein distance
    wasserstein.append(emd(learned_dict.kernels_, generating_dict,
                        'chordal', scale=True))
    # Get the objective error
    objective_error.append(learned_dict.error_.sum())
    
plot_multivariate(array(objective_error), array(detection_rate),
                100.-array(wasserstein), n_iter, 'multivariate-case')
    
# Another possibility is to rely on a callback function such as 
def callback_distance(loc):
    ii, iter_offset = loc['ii'], loc['iter_offset']
    n_batches = loc['n_batches']
    if np.mod((ii-iter_offset)/int(n_batches), n_iter) == 0:
        # Compute distance only every 5 iterations, as in previous case