Esempio n. 1
0
def main():
    # args from Simple Queries paper
    DIM = 30
    WORDGRAMS = 2
    MINCOUNT = 8
    MINN = 3
    MAXN = 3
    BUCKET = 1000000

    # adjust these
    EPOCH = 5
    LR = 0.15  # 0.15 good for ~5000
    KERN = 'lin'  # lin or rbf or poly
    NUM_RUNS = 1  # number of test runs
    SUBSET_VAL = 300  # number of subset instances for self reported dataset
    LIN_C = 0.90  # hyperparameter for linear kernel

    run = 0

    print("starting dictionary creation.............................")
    dictionary = Dictionary(WORDGRAMS, MINCOUNT, BUCKET, SUBSET_VAL, run)
    X_train, X_test, y_train, y_test = dictionary.get_train_and_test()
    print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)

    n_train = dictionary.get_n_train_instances()
    n_test = dictionary.get_n_manual_instances()

    X_train = dictionary.get_trainset()
    X_test = dictionary.get_manual_testset()

    print()
    print("starting optimization")
    #coef = kernel_mean_matching(X_train, X_test, n_train, n_test, kern='lin', B=10)
    coef = kernel_mean_matching(X_test, X_train[0], LIN_C, kern='lin', B=10)
    print(coef)
Esempio n. 2
0
###################################################################

WORDGRAMS = 3
MINCOUNT = 2
BUCKET = 1000000

print("starting dictionary creation.............................")
dictionary = Dictionary(WORDGRAMS, MINCOUNT, BUCKET)
X_train, X_test, y_train, y_test = dictionary.get_train_and_test()
print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)

n_train = dictionary.get_n_train_instances()
n_test = dictionary.get_n_manual_instances()

X_train = dictionary.get_trainset()
X_test = dictionary.get_manual_testset()

B = n_train
#sigma = np.std(X_train)  # compute standard deviation ????
sigma = 0.25

b = (0.0, B)
bounds = (b, b, b, b, b)
beta0 = np.zeros((n_train))

print("creating gram matrix")
K = create_K()
k = create_k()
print(K.shape, k.shape)
print("dont creating gram matrix")