Esempio n. 1
0
def test_gradient_beta(n_samples, log_domain, gradient):
    p = 2
    n, m = 10, 15
    eps = 1
    n_layers = 100

    alphas, beta, C, *_ = make_ot(n, m, p, n_samples=n_samples, random_state=0)

    snet = Sinkhorn(n_layers=n_layers,
                    log_domain=log_domain,
                    gradient_computation=gradient)
    snet_star = Sinkhorn(n_layers=1000,
                         log_domain=False,
                         gradient_computation='analytic')

    (f, g), _ = snet.transform(alphas, beta, C, eps)
    (f_star, g_star), _ = snet_star.transform(alphas, beta, C, eps)
    err_norm = np.sqrt(
        np.linalg.norm((f - f_star).ravel())**2 +
        np.linalg.norm((g - g_star).ravel())**2)
    assert err_norm < 1e-6

    # Get the gradient with analytic formula and autodiff
    G = snet.gradient_beta(alphas, beta, C, eps)
    G_star = snet_star.gradient_beta(alphas, beta, C, eps)

    assert np.allclose(G, G_star)
Esempio n. 2
0
def get_optimal_transport_problem(n_alpha=100,
                                  n_beta=30,
                                  point_dim=2,
                                  n_samples=1,
                                  eps=1e-1,
                                  random_state=None):
    alphas, beta, C, *_ = make_ot(n_alpha=n_alpha,
                                  n_beta=n_beta,
                                  point_dim=point_dim,
                                  n_samples=n_samples,
                                  random_state=random_state)
    return alphas[:1], beta, C, eps
Esempio n. 3
0
def run_benchmark(n_samples=10, n_alpha=100, eps=1, n_outer=300,
                  step_size=.1, max_layers=64, gpu=False):
    """Benchmark for the wasserstein barycenter computation time

    Parameters:
    -----------
    n_samples: int (default: 10)
        Number of distribution to compute the barycenter from.
    n_alpha: int (default: 100)
        Number of point in the support of the distributions.
    eps: float (default: 1)
        Entropy regularization parameter for the Wasserstein distance.
    n_outer: int (default: 300)
        Maximal number of iteration run for the gradient descent algorithm.
    step_size: float (default: .1)
        Step size for the gradient descent.
    max_layers: int (default: 64)
        The benchmark is computed for a number of inner layers from 1 to
        max_layers in logscale. The max_layer will be rounded to the largest
        power of 2 below.
    gpu: int (default: None)
        If set, will run the computation on GPU number `gpu`.
    """

    device = f'cuda:{gpu}' if gpu is not None else None

    meta = dict(n_samples=n_samples, n_alpha=n_alpha, n_beta=n_alpha,
                point_dim=2)
    alphas, _, C, *_ = make_ot(**meta)

    results = []
    max_layers = int(np.log2(max_layers))
    n_iters = np.unique(np.logspace(
        0, max_layers, num=max_layers + 1, base=2, dtype=int))
    for n_inner in n_iters:
        for gradient in ['autodiff', 'analytic']:
            print(f"Fitting {gradient}[{n_inner}]:", end='', flush=True)
            beta_star, res = wasserstein_barycenter(
                alphas, C, eps, n_outer=n_outer, n_inner=n_inner,
                step_size=step_size, gradient=gradient, device=device,
                meta=meta)
            results.extend(res)

    print("Fitting optimal barycenter:", end='', flush=True)
    beta_star, res = wasserstein_barycenter(
        alphas, C, eps, n_outer=2 * n_outer, n_inner=N_INNER_FULL,
        step_size=step_size, gradient='analytic', device=device,
        meta=meta)
    results.extend(res)

    df = pd.DataFrame(results)
    tag = f"{datetime.now().strftime('%Y-%m-%d_%Hh%M')}"
    df.to_pickle(os.path.join(OUTPUT_DIR, f"{BENCH_NAME}_{tag}.pkl"))
Esempio n. 4
0
def run_benchmark(n_rep=50, max_layers=100, n_probe_layers=20,
                  gpu=None):
    """Benchmark for the gradient computation time (analytic vs autodiff)

    Parameters:
    -----------
    n_rep: int (default: 50)
        Number of repetition for the benchmark. For each repetition, a new
        problem is created and the gradient are computed for different number
        of layers.
    max_layers: int (default: 100)
        Maximal number of layers. The benchmark is run for different number of
        n_layers which are chosen in log-scale between 1 and max_layers.
    n_probe_layers: int (default: 20)
        Number of number of layers chosen in the log-scale.
    gpu: int (default: none)
        If not None, use GPU number `gpu` to run the gradient computation.
    """
    eps = 1
    dimensions = dict(n_alpha=1000, n_beta=500, point_dim=2, n_samples=100)

    device = f'cuda:{gpu}' if gpu is not None else None

    layers = np.unique(np.logspace(0, np.log(max_layers), n_probe_layers,
                                   dtype=int))
    n_probe_layers = len(layers)

    layers = np.minimum(max_layers, layers)
    results = []
    for j in range(n_rep):
        alpha, beta, C, *_ = make_ot(**dimensions, random_state=None)
        args = check_tensor(alpha, beta, C, device=device)
        for i, nl in enumerate(layers):
            progress = (j*n_probe_layers + i) / (n_rep * n_probe_layers)
            print(f"\rBenchmark gradient computation on {device}: "
                  f"{progress:.1%}", end='', flush=True)
            for gradient in ['analytic', 'autodiff', 'implicit']:
                model = Sinkhorn(
                    n_layers=nl, gradient_computation=gradient,
                    device=device, log_domain=False)
                t_start = time()
                model.gradient_beta(*args, eps=eps)
                delta_t = time() - t_start
                results.append(dict(
                    gradient=gradient, n_layers=nl, time=delta_t, **dimensions
                ))

    df = pd.DataFrame(results)
    tag = f"{datetime.now().strftime('%Y-%m-%d_%Hh%M')}"
    df.to_pickle(os.path.join(OUTPUT_DIR, f"{BENCH_NAME}_{tag}.pkl"))
Esempio n. 5
0
def test_sinkhorn_hessian():
    p = 2
    n, m = 10, 15
    eps = .1
    n_layers = 2000

    alpha, beta, C, *_ = make_ot(n, m, p, n_samples=1, random_state=0)
    K = np.exp(-C / eps)
    u, v = sinkhorn(alpha, beta, K, n_layers)
    z = np.concatenate([u, v])
    H = dzz(K, alpha, beta, z, eps)
    hess = autograd.hessian(dual_loss, argnum=0)
    H1 = hess(eps * np.log(z), alpha, beta, K, eps)
    assert np.allclose(H, H1)
Esempio n. 6
0
def test_sinkhorn_np(n_samples, log_domain):
    p = 2
    n, m = 10, 15
    eps = .1
    n_layers = 500

    alphas, beta, C, *_ = make_ot(n, m, p, n_samples=n_samples, random_state=0)
    K = np.exp(-C / eps)

    snet = Sinkhorn(n_layers=n_layers, log_domain=log_domain)
    (f, g), _ = snet.transform(alphas, beta, C, eps)

    for i in range(n_samples):
        u, v = sinkhorn(alphas[i], beta, K, n_layers)
        assert np.allclose(f[i], eps * np.log(u))
        assert np.allclose(g[i], eps * np.log(v))
Esempio n. 7
0
def test_gradient(n_iter, grad, f_grad):
    p = 2
    n, m = 10, 15
    eps = 1
    n_samples = 2

    alphas, beta, C, *_ = make_ot(n, m, p, n_samples=n_samples, random_state=0)
    K = np.exp(-C / eps)

    # Compute gradient with default parameters
    sinkhorn = Sinkhorn(n_layers=n_iter, gradient_computation=grad)

    for i in range(n_samples):
        g = sinkhorn.gradient_beta(alphas[i:i + 1], beta, C, eps)
        g_np = f_grad(alphas[i], beta, K, eps, n_iter)[n:]

        assert np.allclose(g_np, g), np.linalg.norm(g - g_np)
Esempio n. 8
0
def test_log_domain(eps, n_layers):
    """Test that the log domain computation is equivalent to classical sinkhorn
    """
    p = 2
    n, m = 10, 15

    alpha, beta, C, *_ = make_ot(n, m, p, random_state=0)
    alpha = np.r_['0,2', alpha, alpha]

    snet1 = Sinkhorn(n_layers, log_domain=True)
    (f1, g1), _ = snet1.transform(alpha, beta, C, eps)
    snet2 = Sinkhorn(n_layers, log_domain=False)
    (f2, g2), _ = snet2.transform(alpha, beta, C, eps)
    assert np.allclose(f1, f2)
    assert np.allclose(g1, g2)

    # Check that the scores are well computed
    assert np.isclose(snet1.score(alpha, beta, C, eps),
                      snet2.score(alpha, beta, C, eps))
Esempio n. 9
0
                            random_state=8),
            'to_plot': ['z', 'g1', 'g2'],
        },
        'sinkhorn': {
            'name':
            'Wasserstein Distance',
            'model':
            Sinkhorn,
            'max_layer':
            60,
            'model_args':
            dict(log_domain=False),
            'pb_func':
            get_optimal_transport_problem,
            'pb_args':
            dict(n_alpha=100,
                 n_beta=30,
                 point_dim=2,
                 n_samples=2,
                 random_state=53),
            'to_plot': ['g1', 'g2', 'g3', 'z'],
        },
    }

    make_ot()

    if args.plot:
        plot_benchmark(config, file_name=args.file)
    else:
        run_benchmark(config)