Esempio n. 1
0
    def sum(cls, data, epsilon, axis=None):
        """
        Performs the sum operation and anonymizes the value(s) using the provided
        privacy budget.

        Parameters
        ----------
        data : list|ndarray
            The data to retrieve the sum value(s) from.
        epsilon : float
            The privacy budget.
        [axis] : int|tuple
            Axis or tuple of axes along which to obtain the sum value(s).

        Returns
        -------
        float|ndarray
            The anonymized sum value(s).

        """
        lower = np.min(data, axis=axis)
        upper = np.max(data, axis=axis)
        value = np.sum(data, axis=axis)
        if np.isscalar(lower):
            anonymized = DiffPrivLaplaceMechanism.anonymize_sum_with_budget(
                value, lower, upper, epsilon)
        else:
            size = lower.size
            anonymized = np.zeros(size)
            for index in range(0, size):
                anonymized[
                    index] = DiffPrivLaplaceMechanism.anonymize_sum_with_budget(
                        value[index], lower[index], upper[index], epsilon)

        return anonymized
Esempio n. 2
0
 def test_anonymize_sum_with_budget_multiple(self):
     expected_values = np.array([145.0590587, 702.4284063])
     lower = 10.0
     upper = 99.0
     epsilon = 1.0
     self.set_seed()
     anonymized = DiffPrivLaplaceMechanism.anonymize_sum_with_budget(
         [87.0, 435.0], lower, upper, epsilon)
     np.testing.assert_almost_equal(anonymized, expected_values)
Esempio n. 3
0
 def test_anonymize_sum_with_budget_single_many(self):
     expected_values = np.array([145.0590587, 354.4284063, 32.746848])
     lower = 10.0
     upper = 99.0
     epsilon = 1.0
     self.set_seed()
     anonymized = DiffPrivLaplaceMechanism.anonymize_sum_with_budget(
         87.0, lower, upper, epsilon, size=3)
     np.testing.assert_almost_equal(anonymized, expected_values)
Esempio n. 4
0
 def test_anonymize_sum_with_budget_single(self):
     expected_value = 145.05905871186388
     lower = 10.0
     upper = 99.0
     epsilon = 1.0
     self.set_seed()
     anonymized = DiffPrivLaplaceMechanism.anonymize_sum_with_budget(
         87.0, lower, upper, epsilon)
     np.testing.assert_almost_equal(anonymized, expected_value)