Esempio n. 1
0
    def test_count_size_mismatch_error(self):
        data = np.array([
            np.array([0.1, -0.1, 0.1, 0.1] * 10),
            np.array([0.1, -0.1, 0.1, 0.1] * 10)
        ])
        selectors = [[]]

        self.set_seed()
        with self.assertRaises(DiffPrivSizeMismatch):
            DiffPrivLaplaceSanitizer.count(data, selectors, self.epsilon)
Esempio n. 2
0
    def test_decompose_data_slice_invalid_decomposition_error(self):
        data = np.array([0.1, -0.1, 0.01, 0.0, -0.01, 0.1, 0.1] * 10)

        def selector_positive(data):
            return data != 0.0

        def selector_negative(data):
            return data != 0.0

        selectors = [
            selector_positive,
            selector_negative,
        ]

        with self.assertRaises(DiffPrivInvalidDecomposition):
            DiffPrivLaplaceSanitizer.decompose_data_slice(data, selectors)
Esempio n. 3
0
    def test_decompose_data_slice_three_selectors(self):
        data = np.array([0.1, -0.1, 0.01, -0.01, 0.1, 0.1] * 10)
        expected_result = np.array([(data > -0.1) &
                                    (data < 0.1), data >= 0.1, data <= -0.1], )

        def selector_near_zero(data):
            return (data > -0.1) & (data < 0.1)

        def selector_positive(data):
            return data >= 0.1

        def selector_negative(data):
            return data <= -0.1

        selectors = [
            selector_near_zero,
            selector_positive,
            selector_negative,
        ]

        result = DiffPrivLaplaceSanitizer.decompose_data_slice(data, selectors)
        self.assertEqual(len(result), len(selectors))
        for index in range(len(expected_result)):
            np.testing.assert_almost_equal(result[index],
                                           expected_result[index])
Esempio n. 4
0
    def test_count_multiple_with_postprocess_with_axis_1(self):
        data = np.array([
            np.array([0.1, -0.1, 0.1, 0.1] * 10),
            np.array([0.1, -0.1, 0.1, 0.1] * 10),
        ])
        postprocess = True
        expected_result = [
            np.array([np.sum(data[0] >= 0),
                      np.sum(data[0] < 0)]),
            np.array([np.sum(data[1] >= 0),
                      np.sum(data[1] < 0)]),
        ]

        def selector_positive(data):
            return data >= 0

        def selector_negative(data):
            return data < 0

        selectors = [
            [selector_positive, selector_negative],
            [selector_positive, selector_negative],
        ]

        self.set_seed()
        results = DiffPrivLaplaceSanitizer.count(data,
                                                 selectors,
                                                 self.epsilon,
                                                 axis=1,
                                                 postprocess=postprocess)

        for index in range(len(expected_result)):
            np.testing.assert_almost_equal(results[index],
                                           expected_result[index])
Esempio n. 5
0
    def test_count_single_no_postprocess_with_axis_1(self):
        data = np.array([0.1, -0.1, 0.1, 0.1] * 10)
        postprocess = False
        expected_result = [np.array([np.sum(data >= 0), np.sum(data < 0)])]

        def selector_positive(data):
            return data >= 0

        def selector_negative(data):
            return data < 0

        selectors = [
            selector_positive,
            selector_negative,
        ]

        data = data.transpose()
        self.set_seed()
        results = DiffPrivLaplaceSanitizer.count(data,
                                                 selectors,
                                                 self.epsilon,
                                                 axis=1,
                                                 postprocess=postprocess)

        for index in range(len(expected_result)):
            np.testing.assert_almost_equal(results[index],
                                           expected_result[index])
Esempio n. 6
0
    def test_count_invalid_dimension_error(self):
        data = np.array([np.array([np.array([0.1, -0.1, 0.1, 0.1] * 10)])])

        def selector_positive(data):
            return data >= 0

        def selector_negative(data):
            return data < 0

        selectors = [
            selector_positive,
            selector_negative,
        ]

        self.set_seed()
        with self.assertRaises(DiffPrivInvalidDimensions):
            DiffPrivLaplaceSanitizer.count(data, selectors, self.epsilon)
Esempio n. 7
0
    def test_count_example(self):
        epsilon = 0.1
        data = np.array([0.01, -0.01, 0.03, -0.001, 0.1] * 2)
        expected_value = np.array([np.array([5.0, 5.0])])

        def selector_positive(data):
            return data >= 0.0

        def selector_negative(data):
            return data < 0.0

        selectors = [selector_positive, selector_negative]
        self.set_seed()
        value = DiffPrivLaplaceSanitizer.count(data, selectors, epsilon)
        np.testing.assert_almost_equal(value, expected_value)