Esempio n. 1
0
def stop_max_activations():
    """ Stop Max Activations Job """
    job = job_from_request()
    args = flask.request.args
    job_id = args["gradient_ascent_id"]
    scheduler.abort_job(job_id)
    return flask.jsonify({"status": "success"}), 200
Esempio n. 2
0
def image_classification_model_classify_one():
    """
    Classify one image and return the top 5 classifications

    Returns JSON when requested: {predictions: {category: confidence,...}}
    """
    job = job_from_request()

    image = None
    if "image_url" in flask.request.form and flask.request.form["image_url"]:
        image = utils.image.load_image(flask.request.form["image_url"])
    elif "image_file" in flask.request.files and flask.request.files["image_file"]:
        outfile = tempfile.mkstemp(suffix=".bin")
        flask.request.files["image_file"].save(outfile[1])
        image = utils.image.load_image(outfile[1])
        os.close(outfile[0])
        os.remove(outfile[1])
    else:
        raise werkzeug.exceptions.BadRequest("must provide image_url or image_file")

    # resize image
    db_task = job.train_task().dataset.train_db_task()
    height = db_task.image_dims[0]
    width = db_task.image_dims[1]
    if job.train_task().crop_size:
        height = job.train_task().crop_size
        width = job.train_task().crop_size
    image = utils.image.resize_image(
        image, height, width, channels=db_task.image_dims[2], resize_mode=db_task.resize_mode
    )

    epoch = None
    if "snapshot_epoch" in flask.request.form:
        epoch = float(flask.request.form["snapshot_epoch"])

    layers = "none"
    if "show_visualizations" in flask.request.form and flask.request.form["show_visualizations"]:
        layers = "all"

    predictions, visualizations = None, None
    try:
        predictions, visualizations = job.train_task().infer_one(image, snapshot_epoch=epoch, layers=layers)
    except frameworks.errors.InferenceError as e:
        return e.__str__(), 403

    # take top 5
    if predictions:
        predictions = [(p[0], round(100.0 * p[1], 2)) for p in predictions[:5]]

    if request_wants_json():
        return flask.jsonify({"predictions": predictions})
    else:
        return flask.render_template(
            "models/images/classification/classify_one.html",
            job=job,
            image_src=utils.image.embed_image_html(image),
            predictions=predictions,
            visualizations=visualizations,
            total_parameters=sum(v["param_count"] for v in visualizations if v["vis_type"] == "Weights"),
        )
Esempio n. 3
0
def generic_image_dataset_summary():
    """
    Return a short HTML summary of a DatasetJob
    """
    job = job_from_request()

    return flask.render_template('datasets/images/generic/summary.html', dataset=job)
Esempio n. 4
0
def image_classification_model_large_graph():
    """
    Show the loss/accuracy graph, but bigger
    """
    job = job_from_request()

    return flask.render_template("models/images/classification/large_graph.html", job=job)
Esempio n. 5
0
def large_graph():
    """
    Show the loss/accuracy graph, but bigger
    """
    job = job_from_request()

    return flask.render_template('models/large_graph.html', job=job)
Esempio n. 6
0
def generic_image_model_infer_one():
    """
    Infer one image
    """
    job = job_from_request()

    image = None
    if 'image_url' in flask.request.form and flask.request.form['image_url']:
        image = utils.image.load_image(flask.request.form['image_url'])
    elif 'image_file' in flask.request.files and flask.request.files[
            'image_file']:
        outfile = tempfile.mkstemp(suffix='.bin')
        flask.request.files['image_file'].save(outfile[1])
        image = utils.image.load_image(outfile[1])
        os.close(outfile[0])
        os.remove(outfile[1])
    else:
        raise werkzeug.exceptions.BadRequest(
            'must provide image_url or image_file')

    # resize image
    db_task = job.train_task().dataset.analyze_db_tasks()[0]
    height = db_task.image_height
    width = db_task.image_width
    if job.train_task().crop_size:
        height = job.train_task().crop_size
        width = job.train_task().crop_size
    image = utils.image.resize_image(
        image,
        height,
        width,
        channels=db_task.image_channels,
        resize_mode='squash',
    )

    epoch = None
    if 'snapshot_epoch' in flask.request.form:
        epoch = float(flask.request.form['snapshot_epoch'])

    layers = 'none'
    if 'show_visualizations' in flask.request.form and flask.request.form[
            'show_visualizations']:
        layers = 'all'

    outputs, visualizations = job.train_task().infer_one(image,
                                                         snapshot_epoch=epoch,
                                                         layers=layers)

    if request_wants_json():
        return flask.jsonify({
            'outputs':
            dict((name, blob.tolist()) for name, blob in outputs.iteritems())
        })
    else:
        return flask.render_template(
            'models/images/generic/infer_one.html',
            image_src=utils.image.embed_image_html(image),
            network_outputs=outputs,
            visualizations=visualizations,
        )
Esempio n. 7
0
def image_classification_dataset_summary():
    """
    Return a short HTML summary of a DatasetJob
    """
    job = job_from_request()

    return flask.render_template('datasets/images/classification/summary.html', dataset=job)
Esempio n. 8
0
def image_classification_dataset_summary():
    """
    Return a short HTML summary of a DatasetJob
    """
    job = job_from_request()

    return flask.render_template("datasets/images/classification/summary.html", dataset=job)
Esempio n. 9
0
def summary():
    """
    Return a short HTML summary of a DatasetJob
    """
    job = job_from_request()

    return flask.render_template('datasets/images/generic/summary.html', dataset=job)
Esempio n. 10
0
def image_classification_model_large_graph():
    """
    Show the loss/accuracy graph, but bigger
    """
    job = job_from_request()

    return flask.render_template('models/images/classification/large_graph.html', job=job)
Esempio n. 11
0
def generic_image_model_large_graph():
    """
    Show the loss/accuracy graph, but bigger
    """
    job = job_from_request()

    return flask.render_template("models/images/generic/large_graph.html", job=job)
Esempio n. 12
0
def feature_extraction_model_large_graph():
    """
    Show the loss/accuracy graph, but bigger
    """
    job = job_from_request()
    workspace = get_workspace_details(flask.request.url)
    return flask.render_template('models/images/extraction/large_graph.html', job=job, workspace = workspace)
Esempio n. 13
0
def timeline_tracing():
    """
    Shows timeline trace of a model
    """
    job = job_from_request()

    return flask.render_template('models/timeline_tracing.html', job=job)
Esempio n. 14
0
def image_classification_model_classify_one():
    """
    Classify one image and return the top 5 classifications

    Returns JSON when requested: {predictions: {category: confidence,...}}
    """
    job = job_from_request()

    image = None
    if 'image_url' in flask.request.form and flask.request.form['image_url']:
        image = utils.image.load_image(flask.request.form['image_url'])
    elif 'image_file' in flask.request.files and flask.request.files[
            'image_file']:
        outfile = tempfile.mkstemp(suffix='.bin')
        flask.request.files['image_file'].save(outfile[1])
        image = utils.image.load_image(outfile[1])
        os.close(outfile[0])
        os.remove(outfile[1])
    else:
        raise werkzeug.exceptions.BadRequest(
            'must provide image_url or image_file')

    # resize image
    db_task = job.train_task().dataset.train_db_task()
    height = db_task.image_dims[0]
    width = db_task.image_dims[1]
    if job.train_task().crop_size:
        height = job.train_task().crop_size
        width = job.train_task().crop_size
    image = utils.image.resize_image(
        image,
        height,
        width,
        channels=db_task.image_dims[2],
        resize_mode=db_task.resize_mode,
    )

    epoch = None
    if 'snapshot_epoch' in flask.request.form:
        epoch = float(flask.request.form['snapshot_epoch'])

    layers = 'none'
    if 'show_visualizations' in flask.request.form and flask.request.form[
            'show_visualizations']:
        layers = 'all'

    predictions, visualizations = job.train_task().infer_one(
        image, snapshot_epoch=epoch, layers=layers)
    # take top 5
    predictions = [(p[0], round(100.0 * p[1], 2)) for p in predictions[:5]]

    if request_wants_json():
        return flask.jsonify({'predictions': predictions})
    else:
        return flask.render_template(
            'models/images/classification/classify_one.html',
            image_src=utils.image.embed_image_html(image),
            predictions=predictions,
            visualizations=visualizations,
        )
Esempio n. 15
0
def generic_image_model_infer_many():
    """
    Infer many images
    """
    job = job_from_request()

    image_list = flask.request.files.get("image_list")
    if not image_list:
        raise werkzeug.exceptions.BadRequest("image_list is a required field")

    epoch = None
    if "snapshot_epoch" in flask.request.form:
        epoch = float(flask.request.form["snapshot_epoch"])

    paths = []
    images = []

    db_task = job.train_task().dataset.analyze_db_tasks()[0]
    height = db_task.image_height
    width = db_task.image_width
    channels = db_task.image_channels

    for line in image_list.readlines():
        line = line.strip()
        if not line:
            continue

        path = None
        # might contain a numerical label at the end
        match = re.match(r"(.*\S)\s+\d+$", line)
        if match:
            path = match.group(1)
        else:
            path = line

        try:
            image = utils.image.load_image(path)
            image = utils.image.resize_image(image, height, width, channels=channels, resize_mode="squash")
            paths.append(path)
            images.append(image)
        except utils.errors.LoadImageError as e:
            print e

    if not len(images):
        raise werkzeug.exceptions.BadRequest("Unable to load any images from the file")

    outputs = job.train_task().infer_many(images, snapshot_epoch=epoch)
    if outputs is None:
        raise RuntimeError("An error occured while processing the images")

    if request_wants_json():
        result = {}
        for i, path in enumerate(paths):
            result[path] = dict((name, blob[i].tolist()) for name, blob in outputs.iteritems())
        return flask.jsonify({"outputs": result})
    else:
        return flask.render_template(
            "models/images/generic/infer_many.html", job=job, paths=paths, network_outputs=outputs
        )
Esempio n. 16
0
def timeline_trace_data():
    """
    Shows timeline trace of a model
    """
    job = job_from_request()
    step = get_request_arg('step')
    if step is None:
        raise werkzeug.exceptions.BadRequest('step is a required field')
    return job.train_task().timeline_trace(int(step))
Esempio n. 17
0
def timeline_trace_data():
    """
    Shows timeline trace of a model
    """
    job = job_from_request()
    step = get_request_arg('step')
    if step is None:
        raise werkzeug.exceptions.BadRequest('step is a required field')
    return job.train_task().timeline_trace(int(step))
Esempio n. 18
0
def image_classification_model_classify_one():
    """
    Classify one image and return the top 5 classifications

    Returns JSON when requested: {predictions: {category: confidence,...}}
    """
    job = job_from_request()

    image = None
    if 'image_url' in flask.request.form and flask.request.form['image_url']:
        image = utils.image.load_image(flask.request.form['image_url'])
    elif 'image_file' in flask.request.files and flask.request.files['image_file']:
        outfile = tempfile.mkstemp(suffix='.bin')
        flask.request.files['image_file'].save(outfile[1])
        image = utils.image.load_image(outfile[1])
        os.close(outfile[0])
        os.remove(outfile[1])
    else:
        raise werkzeug.exceptions.BadRequest('must provide image_url or image_file')

    # resize image
    db_task = job.train_task().dataset.train_db_task()
    height = db_task.image_dims[0]
    width = db_task.image_dims[1]
    if job.train_task().crop_size:
        height = job.train_task().crop_size
        width = job.train_task().crop_size
    image = utils.image.resize_image(image, height, width,
            channels = db_task.image_dims[2],
            resize_mode = db_task.resize_mode,
            )

    epoch = None
    if 'snapshot_epoch' in flask.request.form:
        epoch = float(flask.request.form['snapshot_epoch'])

    layers = 'none'
    if 'show_visualizations' in flask.request.form and flask.request.form['show_visualizations']:
        layers = 'all'

    predictions, visualizations = None, None
    predictions, visualizations = job.train_task().infer_one(image, snapshot_epoch=epoch, layers=layers)

    # take top 5
    if predictions:
        predictions = [(p[0], round(100.0*p[1],2)) for p in predictions[:5]]

    if request_wants_json():
        return flask.jsonify({'predictions': predictions})
    else:
        return flask.render_template('models/images/classification/classify_one.html',
                job             = job,
                image_src       = utils.image.embed_image_html(image),
                predictions     = predictions,
                visualizations  = visualizations,
                total_parameters= sum(v['param_count'] for v in visualizations if v['vis_type'] == 'Weights'),
                )
Esempio n. 19
0
def explore():
    """
    Returns a gallery consisting of the images of one of the dbs
    """
    job = job_from_request()
    # Get LMDB
    db = job.path(flask.request.args.get('db'))
    db_path = job.path(db)
    labels = []

    if COLOR_PALETTE_ATTRIBUTE in job.extension_userdata:
        # assume single-channel 8-bit palette
        palette = job.extension_userdata[COLOR_PALETTE_ATTRIBUTE]
        palette = np.array(palette).reshape((len(palette)/3,3)) / 255.
        # normalize input pixels to [0,1]
        norm = mpl.colors.Normalize(vmin=0,vmax=255)
        # create map
        cmap = mpl.pyplot.cm.ScalarMappable(norm=norm,
                                            cmap=mpl.colors.ListedColormap(palette))
    else:
        cmap = None

    page = int(flask.request.args.get('page', 0))
    size = int(flask.request.args.get('size', 25))

    reader = DbReader(db_path)
    count = 0
    imgs = []

    min_page = max(0, page - 5)
    total_entries = reader.total_entries

    max_page = min((total_entries-1) / size, page + 5)
    pages = range(min_page, max_page + 1)
    for key, value in reader.entries():
        if count >= page*size:
            datum = caffe_pb2.Datum()
            datum.ParseFromString(value)
            if not datum.encoded:
                raise RuntimeError("Expected encoded database")
            s = StringIO()
            s.write(datum.data)
            s.seek(0)
            img = PIL.Image.open(s)
            if cmap and img.mode in ['L', '1']:
                data = np.array(img)
                data = cmap.to_rgba(data)*255
                data = data.astype('uint8')
                # keep RGB values only, remove alpha channel
                data = data[:, :, 0:3]
                img = PIL.Image.fromarray(data)
            imgs.append({"label": None, "b64": utils.image.embed_image_html(img)})
        count += 1
        if len(imgs) >= size:
            break

    return flask.render_template('datasets/images/explore.html', page=page, size=size, job=job, imgs=imgs, labels=None, pages=pages, label=None, total_entries=total_entries, db=db)
Esempio n. 20
0
def remove_max_activations():
    """ Deletes Max Activations Dataset pertaining to specified layer in job """
    job = job_from_request()
    args = flask.request.args
    layer_name = args["layer_name"]

    if os.path.isfile(job.get_max_activations_path()):
        f = h5py.File(job.get_max_activations_path(), 'a')
        if layer_name in f:
            del f[layer_name]
            return flask.jsonify({"status": "success"}), 200

    return flask.jsonify({"status": "error"}), 500
Esempio n. 21
0
def summary():
    """
    Return a short HTML summary of a DatasetJob
    """
    job = job_from_request()
    if isinstance(job, dataset_images.ImageClassificationDatasetJob):
        return dataset_images.classification.views.summary(job)
    elif isinstance(job, dataset_images.GenericImageDatasetJob):
        return dataset_images.generic.views.summary(job)
    elif isinstance(job, generic.GenericDatasetJob):
        return generic.views.summary(job)
    else:
        raise werkzeug.exceptions.BadRequest('Invalid job type')
Esempio n. 22
0
def explore():
    """
    Returns a gallery consisting of the images of one of the dbs
    """
    job = job_from_request()
    # Get LMDB
    db = job.path(flask.request.args.get('db'))
    db_path = job.path(db)
    labels = []

    page = int(flask.request.args.get('page', 0))
    size = int(flask.request.args.get('size', 25))

    reader = DbReader(db_path)
    count = 0
    imgs = []

    min_page = max(0, page - 5)
    total_entries = reader.total_entries

    max_page = min((total_entries - 1) / size, page + 5)
    pages = range(min_page, max_page + 1)
    for key, value in reader.entries():
        if count >= page * size:
            datum = caffe_pb2.Datum()
            datum.ParseFromString(value)
            if not datum.encoded:
                raise RuntimeError("Expected encoded database")
            s = StringIO()
            s.write(datum.data)
            s.seek(0)
            img = PIL.Image.open(s)
            imgs.append({
                "label": None,
                "b64": utils.image.embed_image_html(img)
            })
        count += 1
        if len(imgs) >= size:
            break

    return flask.render_template('datasets/images/explore.html',
                                 page=page,
                                 size=size,
                                 job=job,
                                 imgs=imgs,
                                 labels=None,
                                 pages=pages,
                                 label=None,
                                 total_entries=total_entries,
                                 db=db)
Esempio n. 23
0
def generic_image_model_infer_one():
    """
    Infer one image
    """
    job = job_from_request()

    image = None
    if 'image_url' in flask.request.form and flask.request.form['image_url']:
        image = utils.image.load_image(flask.request.form['image_url'])
    elif 'image_file' in flask.request.files and flask.request.files['image_file']:
        outfile = tempfile.mkstemp(suffix='.bin')
        flask.request.files['image_file'].save(outfile[1])
        image = utils.image.load_image(outfile[1])
        os.close(outfile[0])
        os.remove(outfile[1])
    else:
        raise werkzeug.exceptions.BadRequest('must provide image_url or image_file')

    # resize image
    db_task = job.train_task().dataset.analyze_db_tasks()[0]
    height = db_task.image_height
    width = db_task.image_width
    if job.train_task().crop_size:
        height = job.train_task().crop_size
        width = job.train_task().crop_size
    image = utils.image.resize_image(image, height, width,
            channels = db_task.image_channels,
            resize_mode = 'squash',
            )

    epoch = None
    if 'snapshot_epoch' in flask.request.form:
        epoch = float(flask.request.form['snapshot_epoch'])

    layers = 'none'
    if 'show_visualizations' in flask.request.form and flask.request.form['show_visualizations']:
        layers = 'all'

    outputs, visualizations = job.train_task().infer_one(image, snapshot_epoch=epoch, layers=layers)

    if request_wants_json():
        return flask.jsonify({'outputs': dict((name, blob.tolist()) for name,blob in outputs.iteritems())})
    else:
        return flask.render_template('models/images/generic/infer_one.html',
                job             = job,
                image_src       = utils.image.embed_image_html(image),
                network_outputs = outputs,
                visualizations  = visualizations,
                total_parameters= sum(v['param_count'] for v in visualizations if v['vis_type'] == 'Weights'),
                )
Esempio n. 24
0
def top_n():
    """
    Classify many images and show the top N images per category by confidence
    """
    model_job = job_from_request()

    image_list = flask.request.files['image_list']
    if not image_list:
        raise werkzeug.exceptions.BadRequest('File upload not found')

    epoch = None
    if 'snapshot_epoch' in flask.request.form:
        epoch = float(flask.request.form['snapshot_epoch'])
    if 'top_n' in flask.request.form and flask.request.form['top_n'].strip():
        top_n = int(flask.request.form['top_n'])
    else:
        top_n = 9

    if 'image_folder' in flask.request.form and flask.request.form['image_folder'].strip():
        image_folder = flask.request.form['image_folder']
        if not os.path.exists(image_folder):
            raise werkzeug.exceptions.BadRequest('image_folder "%s" does not exit' % image_folder)
    else:
        image_folder = None

    if 'num_test_images' in flask.request.form and flask.request.form['num_test_images'].strip():
        num_test_images = int(flask.request.form['num_test_images'])
    else:
        num_test_images = None

    paths, _ = read_image_list(image_list, image_folder, num_test_images)

    # create inference job
    inference_job = ImageInferenceTopNJob(
                username    = utils.auth.get_username(),
                name        = "TopN Image Classification",
                model       = model_job,
                images      = paths,
                epoch       = epoch,
                layers      = 'none',
                top_n       = top_n,
                )

    # schedule tasks
    scheduler.add_job(inference_job)

    if request_wants_json():
        return flask.jsonify(inference_job.json_dict())
    else:
        return flask.redirect(flask.url_for('digits.inference.views.show', job_id=inference_job.id()))
Esempio n. 25
0
def image_classification_model_classify_one():
    """
    Classify one image and return the top 5 classifications

    Returns JSON when requested: {predictions: {category: confidence,...}}
    """
    job = job_from_request()

    image = None
    if "image_url" in flask.request.form and flask.request.form["image_url"]:
        image = utils.image.load_image(flask.request.form["image_url"])
    elif "image_file" in flask.request.files and flask.request.files["image_file"]:
        with tempfile.NamedTemporaryFile() as outfile:
            flask.request.files["image_file"].save(outfile.name)
            image = utils.image.load_image(outfile.name)
    else:
        raise werkzeug.exceptions.BadRequest("must provide image_url or image_file")

    # resize image
    db_task = job.train_task().dataset.train_db_task()
    height = db_task.image_dims[0]
    width = db_task.image_dims[1]
    if job.train_task().crop_size:
        height = job.train_task().crop_size
        width = job.train_task().crop_size
    image = utils.image.resize_image(
        image, height, width, channels=db_task.image_dims[2], resize_mode=db_task.resize_mode
    )

    epoch = None
    if "snapshot_epoch" in flask.request.form:
        epoch = float(flask.request.form["snapshot_epoch"])

    layers = "none"
    if "show_visualizations" in flask.request.form and flask.request.form["show_visualizations"]:
        layers = "all"

    predictions, visualizations = job.train_task().infer_one(image, snapshot_epoch=epoch, layers=layers)
    # take top 5
    predictions = [(p[0], round(100.0 * p[1], 2)) for p in predictions[:5]]

    if request_wants_json():
        return flask.jsonify({"predictions": predictions})
    else:
        return flask.render_template(
            "models/images/classification/classify_one.html",
            image_src=utils.image.embed_image_html(image),
            predictions=predictions,
            visualizations=visualizations,
        )
Esempio n. 26
0
def classify_many():
    """
    Start a new classify_may job
    """

    # kicking off a new inference job
    model_job = job_from_request()
    image_list = flask.request.files.get('image_list')
    if not image_list:
        raise werkzeug.exceptions.BadRequest('image_list is a required field')

    if 'image_folder' in flask.request.form and flask.request.form['image_folder'].strip():
        image_folder = flask.request.form['image_folder']
        if not os.path.exists(image_folder):
            raise werkzeug.exceptions.BadRequest('image_folder "%s" does not exit' % image_folder)
    else:
        image_folder = None

    if 'num_test_images' in flask.request.form and flask.request.form['num_test_images'].strip():
        num_test_images = int(flask.request.form['num_test_images'])
    else:
        num_test_images = None

    epoch = None
    if 'snapshot_epoch' in flask.request.form:
        epoch = float(flask.request.form['snapshot_epoch'])

    paths, ground_truths = read_image_list(image_list, image_folder, num_test_images)

    # create inference job
    inference_job = ImageInferenceClassifyManyJob(
                username      = utils.auth.get_username(),
                name          = "Classify Many Images",
                model         = model_job,
                images        = paths,
                epoch         = epoch,
                layers        = 'none',
                ground_truths = ground_truths,
                )

    # schedule tasks
    scheduler.add_job(inference_job)

    if request_wants_json():
        return flask.jsonify(inference_job.json_dict())
    else:
        return flask.redirect(flask.url_for('digits.inference.views.show', job_id=inference_job.id()))
Esempio n. 27
0
def generic_image_model_infer_one():
    """
    Infer one image
    """
    job = job_from_request()

    image = None
    if 'image_url' in flask.request.form and flask.request.form['image_url']:
        image = utils.image.load_image(flask.request.form['image_url'])
    elif 'image_file' in flask.request.files and flask.request.files['image_file']:
        with tempfile.NamedTemporaryFile() as outfile:
            flask.request.files['image_file'].save(outfile.name)
            image = utils.image.load_image(outfile.name)
    else:
        raise werkzeug.exceptions.BadRequest('must provide image_url or image_file')

    # resize image
    db_task = job.train_task().dataset.analyze_db_tasks()[0]
    height = db_task.image_height
    width = db_task.image_width
    if job.train_task().crop_size:
        height = job.train_task().crop_size
        width = job.train_task().crop_size
    image = utils.image.resize_image(image, height, width,
            channels = db_task.image_channels,
            resize_mode = 'squash',
            )

    epoch = None
    if 'snapshot_epoch' in flask.request.form:
        epoch = float(flask.request.form['snapshot_epoch'])

    layers = 'none'
    if 'show_visualizations' in flask.request.form and flask.request.form['show_visualizations']:
        layers = 'all'

    outputs, visualizations = job.train_task().infer_one(image, snapshot_epoch=epoch, layers=layers)

    if request_wants_json():
        return flask.jsonify({'outputs': dict((name, blob.tolist()) for name,blob in outputs.iteritems())})
    else:
        return flask.render_template('models/images/generic/infer_one.html',
                image_src       = utils.image.embed_image_html(image),
                network_outputs = outputs,
                visualizations  = visualizations,
                )
Esempio n. 28
0
def generic_image_model_infer_one():
    """
    Infer one image
    """
    job = job_from_request()

    image = None
    if "image_url" in flask.request.form and flask.request.form["image_url"]:
        image = utils.image.load_image(flask.request.form["image_url"])
    elif "image_file" in flask.request.files and flask.request.files["image_file"]:
        outfile = tempfile.mkstemp(suffix=".bin")
        flask.request.files["image_file"].save(outfile[1])
        image = utils.image.load_image(outfile[1])
        os.close(outfile[0])
        os.remove(outfile[1])
    else:
        raise werkzeug.exceptions.BadRequest("must provide image_url or image_file")

    # resize image
    db_task = job.train_task().dataset.analyze_db_tasks()[0]
    height = db_task.image_height
    width = db_task.image_width
    image = utils.image.resize_image(image, height, width, channels=db_task.image_channels, resize_mode="squash")

    epoch = None
    if "snapshot_epoch" in flask.request.form:
        epoch = float(flask.request.form["snapshot_epoch"])

    layers = "none"
    if "show_visualizations" in flask.request.form and flask.request.form["show_visualizations"]:
        layers = "all"

    outputs, visualizations = job.train_task().infer_one(image, snapshot_epoch=epoch, layers=layers)

    if request_wants_json():
        return flask.jsonify({"outputs": dict((name, blob.tolist()) for name, blob in outputs.iteritems())})
    else:
        return flask.render_template(
            "models/images/generic/infer_one.html",
            job=job,
            image_src=utils.image.embed_image_html(image),
            network_outputs=outputs,
            visualizations=visualizations,
            total_parameters=sum(v["param_count"] for v in visualizations if v["vis_type"] == "Weights"),
        )
Esempio n. 29
0
def classify_one():
    """
    Classify one image and return the top 5 classifications

    Returns JSON when requested: {predictions: {category: confidence,...}}
    """
    model_job = job_from_request()

    if 'image_url' in flask.request.form and flask.request.form['image_url']:
        image_path = flask.request.form['image_url']
    elif 'image_file' in flask.request.files and flask.request.files['image_file']:
        outfile = tempfile.mkstemp(suffix='.png')
        flask.request.files['image_file'].save(outfile[1])
        image_path = outfile[1]
        os.close(outfile[0])
    else:
        raise werkzeug.exceptions.BadRequest('must provide image_url or image_file')

    epoch = None
    if 'snapshot_epoch' in flask.request.form:
        epoch = float(flask.request.form['snapshot_epoch'])

    layers = 'none'
    if 'show_visualizations' in flask.request.form and flask.request.form['show_visualizations']:
        layers = 'all'

    # create inference job
    inference_job = ImageInferenceClassifyOneJob(
                username    = utils.auth.get_username(),
                name        = "Classify One Image",
                model       = model_job,
                images      = [image_path],
                epoch       = epoch,
                layers      = layers
                )

    # schedule tasks
    scheduler.add_job(inference_job)

    if request_wants_json():
        return flask.jsonify(inference_job.json_dict())
    else:
        return flask.redirect(flask.url_for('digits.inference.views.show', job_id=inference_job.id()))
Esempio n. 30
0
def get_weights():
    """ Return the weights for a given layer """
    job = job_from_request()

    args = flask.request.args
    layer_name = args["layer_name"]
    range_min = int(args["range_min"])
    range_max = int(args["range_max"])
    data = []
    stats = {}
    num_units = 0

    # Open h5py file, and retrieve weights in specified range for given layer:
    if os.path.isfile(job.get_filters_path()):
        f = h5py.File(job.get_filters_path())
        if layer_name in f:
            num_units = len(f[layer_name])
            stats = json.loads(f[layer_name].attrs["stats"])
            data = f[layer_name][:][range_min:range_max].tolist()

    return flask.jsonify({"data": data, "length": num_units, "stats": stats})
Esempio n. 31
0
def get_max_activations():
    """ Returns array of maximum activations for a given layer """
    job = job_from_request()
    args = flask.request.args
    layer_name = args["layer_name"]
    range_min = int(args["range_min"])
    range_max = int(args["range_max"])
    data = []
    stats = {}

    if layer_has_max_activations(job, layer_name):
        f = h5py.File(job.get_max_activations_path(), 'r')

        completed_units = len(f[layer_name].keys())
        for unit in range(completed_units):
            data.append(True)

        w = h5py.File(job.get_filters_path(), 'r')
        if layer_name in w:
            stats = json.loads(w[layer_name].attrs["stats"])
            total_units = stats["shape"][0]
            uncompleted_units = total_units - completed_units

            if uncompleted_units > 0:
                for unit in range(uncompleted_units):
                    data.append(False)

    elif os.path.isfile(job.get_filters_path()):
        f = h5py.File(job.get_filters_path(), 'r')
        if layer_name in f:
            stats = json.loads(f[layer_name].attrs["stats"])
            data = fill_empty(stats["shape"][0])

    return flask.jsonify({
        "stats": stats,
        "data": data[range_min:range_max],
        "length": len(data)
    })
Esempio n. 32
0
def explore():
    """
    Returns a gallery consisting of the images of one of the dbs
    """
    job = job_from_request()
    # Get LMDB
    db = job.path(flask.request.args.get('db'))
    db_path = job.path(db)
    labels = []

    page = int(flask.request.args.get('page', 0))
    size = int(flask.request.args.get('size', 25))

    reader = DbReader(db_path)
    count = 0
    imgs = []

    min_page = max(0, page - 5)
    total_entries = reader.total_entries

    max_page = min((total_entries-1) / size, page + 5)
    pages = range(min_page, max_page + 1)
    for key, value in reader.entries():
        if count >= page*size:
            datum = caffe_pb2.Datum()
            datum.ParseFromString(value)
            if not datum.encoded:
                raise RuntimeError("Expected encoded database")
            s = StringIO()
            s.write(datum.data)
            s.seek(0)
            img = PIL.Image.open(s)
            imgs.append({"label": None, "b64": utils.image.embed_image_html(img)})
        count += 1
        if len(imgs) >= size:
            break

    return flask.render_template('datasets/images/explore.html', page=page, size=size, job=job, imgs=imgs, labels=None, pages=pages, label=None, total_entries=total_entries, db=db)
Esempio n. 33
0
def max_activation():

    args = flask.request.args
    job = job_from_request()
    layer_name = args["layer_name"]
    unit = args["unit"]

    raw_data = 128 * np.ones((256, 256)).astype(int)

    max_activation_path = job.get_max_activations_path()
    if os.path.isfile(max_activation_path):
        f = h5py.File(max_activation_path, 'r')
        if layer_name in f:
            if str(unit) in f[layer_name]:
                raw_data = np.transpose(f[layer_name][str(unit)]['cropped'][:],
                                        (1, 2, 0))
        f.close()
    # Add one channel for greyscale images:
    if len(raw_data[0][0]) == 1:
        raw_data = np.transpose(raw_data, (2, 0, 1))[0]

    img = PIL.Image.fromarray(np.uint8(raw_data))
    return serve_pil_image(img)
Esempio n. 34
0
def infer_one():
    """
    Infer one image
    """
    model_job = job_from_request()

    remove_image_path = False
    if 'image_path' in flask.request.form and flask.request.form['image_path']:
        image_path = flask.request.form['image_path']
    elif 'image_file' in flask.request.files and flask.request.files['image_file']:
        outfile = tempfile.mkstemp(suffix='.bin')
        flask.request.files['image_file'].save(outfile[1])
        image_path = outfile[1]
        os.close(outfile[0])
        remove_image_path = True
    else:
        raise werkzeug.exceptions.BadRequest('must provide image_path or image_file')

    epoch = None
    if 'snapshot_epoch' in flask.request.form:
        epoch = float(flask.request.form['snapshot_epoch'])

    layers = 'none'
    if 'show_visualizations' in flask.request.form and flask.request.form['show_visualizations']:
        layers = 'all'

    if 'dont_resize' in flask.request.form and flask.request.form['dont_resize']:
        resize = False
    else:
        resize = True

    # create inference job
    inference_job = ImageInferenceJob(
        username= utils.auth.get_username(),
        name= "Infer One Image",
        model=model_job,
        images=[image_path],
        epoch=epoch,
        layers=layers,
        resize=resize,
        )

    # schedule tasks
    scheduler.add_job(inference_job)

    # wait for job to complete
    inference_job.wait_completion()

    # retrieve inference data
    inputs, outputs, model_visualization = inference_job.get_data()

    # set return status code
    status_code = 500 if inference_job.status == 'E' else 200

    # delete job folder and remove from scheduler list
    scheduler.delete_job(inference_job)

    if remove_image_path:
        os.remove(image_path)

    if inputs is not None and len(inputs['data']) == 1:
        image = utils.image.embed_image_html(inputs['data'][0])
        visualizations, header_html, app_begin_html, app_end_html = get_inference_visualizations(
            model_job.dataset,
            inputs,
            outputs)
        inference_view_html = visualizations[0]
    else:
        image = None
        inference_view_html = None
        header_html = None
        app_begin_html = None
        app_end_html = None

    if request_wants_json():
        return flask.jsonify({'outputs': dict((name, blob.tolist())
                             for name, blob in outputs.iteritems())}), status_code
    else:
        return flask.render_template(
            'models/images/generic/infer_one.html',
            model_job=model_job,
            job=inference_job,
            image_src=image,
            inference_view_html=inference_view_html,
            header_html=header_html,
            app_begin_html=app_begin_html,
            app_end_html=app_end_html,
            visualizations=model_visualization,
            total_parameters=sum(v['param_count'] for v in model_visualization
                                 if v['vis_type'] == 'Weights'),
            ), status_code
Esempio n. 35
0
def infer_db():
    """
    Infer a database
    """
    model_job = job_from_request()

    if 'db_path' not in flask.request.form or flask.request.form[
            'db_path'] is None:
        raise werkzeug.exceptions.BadRequest('db_path is a required field')

    db_path = flask.request.form['db_path']

    if not os.path.exists(db_path):
        raise werkzeug.exceptions.BadRequest('DB "%s" does not exit' % db_path)

    epoch = None
    if 'snapshot_epoch' in flask.request.form:
        epoch = float(flask.request.form['snapshot_epoch'])

    if 'dont_resize' in flask.request.form and flask.request.form[
            'dont_resize']:
        resize = False
    else:
        resize = True

    # create inference job
    inference_job = ImageInferenceJob(
        username=utils.auth.get_username(),
        name="Infer Many Images",
        model=model_job,
        images=db_path,
        epoch=epoch,
        layers='none',
        resize=resize,
    )

    # schedule tasks
    scheduler.add_job(inference_job)

    # wait for job to complete
    inference_job.wait_completion()

    # retrieve inference data
    inputs, outputs, _ = inference_job.get_data()

    # set return status code
    status_code = 500 if inference_job.status == 'E' else 200

    # delete job folder and remove from scheduler list
    scheduler.delete_job(inference_job)

    if outputs is not None and len(outputs) < 1:
        # an error occurred
        outputs = None

    if inputs is not None:
        keys = [str(idx) for idx in inputs['ids']]
        inference_views_html, header_html, app_begin_html, app_end_html = get_inference_visualizations(
            model_job.dataset, inputs, outputs)
    else:
        inference_views_html = None
        header_html = None
        keys = None
        app_begin_html = None
        app_end_html = None

    if request_wants_json():
        result = {}
        for i, key in enumerate(keys):
            result[key] = dict(
                (name, blob[i].tolist()) for name, blob in outputs.iteritems())
        return flask.jsonify({'outputs': result}), status_code
    else:
        return flask.render_template(
            'models/images/generic/infer_db.html',
            model_job=model_job,
            job=inference_job,
            keys=keys,
            inference_views_html=inference_views_html,
            header_html=header_html,
            app_begin_html=app_begin_html,
            app_end_html=app_end_html,
        ), status_code
Esempio n. 36
0
def infer_many():
    """
    Infer many images
    """
    model_job = job_from_request()

    image_list = flask.request.files.get('image_list')
    if not image_list:
        raise werkzeug.exceptions.BadRequest('image_list is a required field')

    if 'image_folder' in flask.request.form and flask.request.form[
            'image_folder'].strip():
        image_folder = flask.request.form['image_folder']
        if not os.path.exists(image_folder):
            raise werkzeug.exceptions.BadRequest(
                'image_folder "%s" does not exit' % image_folder)
    else:
        image_folder = None

    if 'num_test_images' in flask.request.form and flask.request.form[
            'num_test_images'].strip():
        num_test_images = int(flask.request.form['num_test_images'])
    else:
        num_test_images = None

    epoch = None
    if 'snapshot_epoch' in flask.request.form:
        epoch = float(flask.request.form['snapshot_epoch'])

    if 'dont_resize' in flask.request.form and flask.request.form[
            'dont_resize']:
        resize = False
    else:
        resize = True

    paths = []

    for line in image_list.readlines():
        line = line.strip()
        if not line:
            continue

        path = None
        # might contain a numerical label at the end
        match = re.match(r'(.*\S)\s+\d+$', line)
        if match:
            path = match.group(1)
        else:
            path = line

        if not utils.is_url(path) and image_folder and not os.path.isabs(path):
            path = os.path.join(image_folder, path)
        paths.append(path)

        if num_test_images is not None and len(paths) >= num_test_images:
            break

    # create inference job
    inference_job = ImageInferenceJob(
        username=utils.auth.get_username(),
        name="Infer Many Images",
        model=model_job,
        images=paths,
        epoch=epoch,
        layers='none',
        resize=resize,
    )

    # schedule tasks
    scheduler.add_job(inference_job)

    # wait for job to complete
    inference_job.wait_completion()

    # retrieve inference data
    inputs, outputs, _ = inference_job.get_data()

    # set return status code
    status_code = 500 if inference_job.status == 'E' else 200

    # delete job folder and remove from scheduler list
    scheduler.delete_job(inference_job)

    if outputs is not None and len(outputs) < 1:
        # an error occurred
        outputs = None

    if inputs is not None:
        paths = [paths[idx] for idx in inputs['ids']]
        inference_views_html, header_html, app_begin_html, app_end_html = get_inference_visualizations(
            model_job.dataset, inputs, outputs)
    else:
        inference_views_html = None
        header_html = None
        app_begin_html = None
        app_end_html = None

    if request_wants_json():
        result = {}
        for i, path in enumerate(paths):
            result[path] = dict(
                (name, blob[i].tolist()) for name, blob in outputs.iteritems())
        return flask.jsonify({'outputs': result}), status_code
    else:
        return flask.render_template(
            'models/images/generic/infer_many.html',
            model_job=model_job,
            job=inference_job,
            paths=paths,
            inference_views_html=inference_views_html,
            header_html=header_html,
            app_begin_html=app_begin_html,
            app_end_html=app_end_html,
        ), status_code
Esempio n. 37
0
def infer_one():
    """
    Infer one image
    """
    model_job = job_from_request()

    remove_image_path = False
    if 'image_path' in flask.request.form and flask.request.form['image_path']:
        image_path = flask.request.form['image_path']
    elif 'image_file' in flask.request.files and flask.request.files[
            'image_file']:
        outfile = tempfile.mkstemp(suffix='.bin')
        flask.request.files['image_file'].save(outfile[1])
        image_path = outfile[1]
        os.close(outfile[0])
        remove_image_path = True
    else:
        raise werkzeug.exceptions.BadRequest(
            'must provide image_path or image_file')

    epoch = None
    if 'snapshot_epoch' in flask.request.form:
        epoch = float(flask.request.form['snapshot_epoch'])

    layers = 'none'
    if 'show_visualizations' in flask.request.form and flask.request.form[
            'show_visualizations']:
        layers = 'all'

    if 'dont_resize' in flask.request.form and flask.request.form[
            'dont_resize']:
        resize = False
    else:
        resize = True

    # create inference job
    inference_job = ImageInferenceJob(
        username=utils.auth.get_username(),
        name="Infer One Image",
        model=model_job,
        images=[image_path],
        epoch=epoch,
        layers=layers,
        resize=resize,
    )

    # schedule tasks
    scheduler.add_job(inference_job)

    # wait for job to complete
    inference_job.wait_completion()

    # retrieve inference data
    inputs, outputs, model_visualization = inference_job.get_data()

    # set return status code
    status_code = 500 if inference_job.status == 'E' else 200

    # delete job folder and remove from scheduler list
    scheduler.delete_job(inference_job)

    if remove_image_path:
        os.remove(image_path)

    if inputs is not None and len(inputs['data']) == 1:
        image = utils.image.embed_image_html(inputs['data'][0])
        visualizations, header_html, app_begin_html, app_end_html = get_inference_visualizations(
            model_job.dataset, inputs, outputs)
        inference_view_html = visualizations[0]
    else:
        image = None
        inference_view_html = None
        header_html = None
        app_begin_html = None
        app_end_html = None

    if request_wants_json():
        return flask.jsonify({
            'outputs':
            dict((name, blob.tolist()) for name, blob in outputs.iteritems())
        }), status_code
    else:
        return flask.render_template(
            'models/images/generic/infer_one.html',
            model_job=model_job,
            job=inference_job,
            image_src=image,
            inference_view_html=inference_view_html,
            header_html=header_html,
            app_begin_html=app_begin_html,
            app_end_html=app_end_html,
            visualizations=model_visualization,
            total_parameters=sum(v['param_count'] for v in model_visualization
                                 if v['vis_type'] == 'Weights'),
        ), status_code
Esempio n. 38
0
def infer_extension():
    """
    Perform inference using the data from an extension inference form
    """
    model_job = job_from_request()

    inference_db_job = None
    try:
        # create an inference database
        inference_db_job = create_inference_db(model_job)
        db_path = inference_db_job.get_feature_db_path(constants.TEST_DB)

        # create database creation job
        epoch = None
        if 'snapshot_epoch' in flask.request.form:
            epoch = float(flask.request.form['snapshot_epoch'])

        layers = 'none'
        if 'show_visualizations' in flask.request.form and flask.request.form[
                'show_visualizations']:
            layers = 'all'

        # create inference job
        inference_job = ImageInferenceJob(
            username=utils.auth.get_username(),
            name="Inference",
            model=model_job,
            images=db_path,
            epoch=epoch,
            layers=layers,
            resize=False,
        )

        # schedule tasks
        scheduler.add_job(inference_job)

        # wait for job to complete
        inference_job.wait_completion()

    finally:
        if inference_db_job:
            scheduler.delete_job(inference_db_job)

    # retrieve inference data
    inputs, outputs, model_visualization = inference_job.get_data()

    # set return status code
    status_code = 500 if inference_job.status == 'E' else 200

    # delete job folder and remove from scheduler list
    scheduler.delete_job(inference_job)

    if outputs is not None and len(outputs) < 1:
        # an error occurred
        outputs = None

    if inputs is not None:
        keys = [str(idx) for idx in inputs['ids']]
        inference_views_html, header_html, app_begin_html, app_end_html = get_inference_visualizations(
            model_job.dataset, inputs, outputs)
    else:
        inference_views_html = None
        header_html = None
        keys = None
        app_begin_html = None
        app_end_html = None

    if request_wants_json():
        result = {}
        for i, key in enumerate(keys):
            result[key] = dict(
                (name, blob[i].tolist()) for name, blob in outputs.iteritems())
        return flask.jsonify({'outputs': result}), status_code
    else:
        return flask.render_template(
            'models/images/generic/infer_extension.html',
            model_job=model_job,
            job=inference_job,
            keys=keys,
            inference_views_html=inference_views_html,
            header_html=header_html,
            app_begin_html=app_begin_html,
            app_end_html=app_end_html,
            visualizations=model_visualization,
            total_parameters=sum(v['param_count'] for v in model_visualization
                                 if v['vis_type'] == 'Weights'),
        ), status_code
Esempio n. 39
0
def image_classification_model_classify_many():
    """
    Classify many images and return the top 5 classifications for each

    Returns JSON when requested: {classifications: {filename: [[category,confidence],...],...}}
    """
    job = job_from_request()

    image_list = flask.request.files.get('image_list')
    if not image_list:
        raise werkzeug.exceptions.BadRequest('image_list is a required field')

    epoch = None
    if 'snapshot_epoch' in flask.request.form:
        epoch = float(flask.request.form['snapshot_epoch'])

    paths = []
    images = []
    dataset = job.train_task().dataset

    for line in image_list.readlines():
        line = line.strip()
        if not line:
            continue

        path = None
        # might contain a numerical label at the end
        match = re.match(r'(.*\S)\s+\d+$', line)
        if match:
            path = match.group(1)
        else:
            path = line

        try:
            image = utils.image.load_image(path)
            image = utils.image.resize_image(
                image,
                dataset.image_dims[0],
                dataset.image_dims[1],
                channels=dataset.image_dims[2],
                resize_mode=dataset.resize_mode,
            )
            paths.append(path)
            images.append(image)
        except utils.errors.LoadImageError as e:
            print e

    if not len(images):
        raise werkzeug.exceptions.BadRequest(
            'Unable to load any images from the file')

    labels, scores = job.train_task().infer_many(images, snapshot_epoch=epoch)
    if scores is None:
        raise RuntimeError('An error occured while processing the images')

    # take top 5
    indices = (-scores).argsort()[:, :5]

    classifications = []
    for image_index, index_list in enumerate(indices):
        result = []
        for i in index_list:
            # `i` is a category in labels and also an index into scores
            result.append((labels[i], round(100.0 * scores[image_index, i],
                                            2)))
        classifications.append(result)

    if request_wants_json():
        joined = dict(zip(paths, classifications))
        return flask.jsonify({'classifications': joined})
    else:
        return flask.render_template(
            'models/images/classification/classify_many.html',
            paths=paths,
            classifications=classifications,
        )
Esempio n. 40
0
def explore():
    """
    Returns a gallery consisting of the images of one of the dbs
    """
    job = job_from_request()
    # Get LMDB
    db = flask.request.args.get('db', 'train')
    if 'train' in db.lower():
        task = job.train_db_task()
    elif 'val' in db.lower():
        task = job.val_db_task()
    elif 'test' in db.lower():
        task = job.test_db_task()
    if task is None:
        raise ValueError('No create_db task for {0}'.format(db))
    if task.status != 'D':
        raise ValueError(
            "This create_db task's status should be 'D' but is '{0}'".format(
                task.status))
    if task.backend != 'lmdb':
        raise ValueError(
            "Backend is {0} while expected backend is lmdb".format(
                task.backend))
    db_path = job.path(task.db_name)
    labels = task.get_labels()

    page = int(flask.request.args.get('page', 0))
    size = int(flask.request.args.get('size', 25))
    label = flask.request.args.get('label', None)

    if label is not None:
        try:
            label = int(label)
        except ValueError:
            label = None

    reader = DbReader(db_path)
    count = 0
    imgs = []

    min_page = max(0, page - 5)
    if label is None:
        total_entries = reader.total_entries
    else:
        # After PR#1500, task.distribution[str(label)] is a dictionary
        # with keys = 'count' and 'error_count'
        label_entries = task.distribution[str(label)]
        if isinstance(label_entries, dict):
            total_entries = label_entries['count']
        else:
            total_entries = label_entries

    max_page = min((total_entries - 1) // size, page + 5)
    pages = range(min_page, max_page + 1)
    for key, value in reader.entries():
        if count >= page * size:
            datum = dataset_pb2.Datum()
            datum.ParseFromString(value)
            if label is None or datum.label == label:
                if datum.encoded:
                    s = BytesIO()
                    s.write(datum.data)
                    s.seek(0)
                    img = PIL.Image.open(s)
                else:
                    arr = datum_to_array(datum)
                    # CHW -> HWC
                    arr = arr.transpose((1, 2, 0))
                    if arr.shape[2] == 1:
                        # HWC -> HW
                        arr = arr[:, :, 0]
                    elif arr.shape[2] == 3:
                        # BGR -> RGB
                        # XXX see issue #59
                        arr = arr[:, :, [2, 1, 0]]
                    img = PIL.Image.fromarray(arr)
                imgs.append({
                    "label": labels[datum.label],
                    "b64": utils.image.embed_image_html(img)
                })
        if label is None:
            count += 1
        else:
            datum = dataset_pb2.Datum()
            datum.ParseFromString(value)
            if datum.label == int(label):
                count += 1
        if len(imgs) >= size:
            break

    return flask.render_template('datasets/images/explore.html',
                                 page=page,
                                 size=size,
                                 job=job,
                                 imgs=imgs,
                                 labels=labels,
                                 pages=pages,
                                 label=label,
                                 total_entries=total_entries,
                                 db=db)
Esempio n. 41
0
def infer_many():
    """
    Infer many images
    """
    model_job = job_from_request()

    image_list = flask.request.files.get('image_list')
    if not image_list:
        raise werkzeug.exceptions.BadRequest('image_list is a required field')

    if 'image_folder' in flask.request.form and flask.request.form['image_folder'].strip():
        image_folder = flask.request.form['image_folder']
        if not os.path.exists(image_folder):
            raise werkzeug.exceptions.BadRequest('image_folder "%s" does not exit' % image_folder)
    else:
        image_folder = None

    if 'num_test_images' in flask.request.form and flask.request.form['num_test_images'].strip():
        num_test_images = int(flask.request.form['num_test_images'])
    else:
        num_test_images = None

    epoch = None
    if 'snapshot_epoch' in flask.request.form:
        epoch = float(flask.request.form['snapshot_epoch'])

    if 'dont_resize' in flask.request.form and flask.request.form['dont_resize']:
        resize = False
    else:
        resize = True

    paths = []

    for line in image_list.readlines():
        line = line.strip()
        if not line:
            continue

        path = None
        # might contain a numerical label at the end
        match = re.match(r'(.*\S)\s+\d+$', line)
        if match:
            path = match.group(1)
        else:
            path = line

        if not utils.is_url(path) and image_folder and not os.path.isabs(path):
            path = os.path.join(image_folder, path)
        paths.append(path)

        if num_test_images is not None and len(paths) >= num_test_images:
            break

    # create inference job
    inference_job = ImageInferenceJob(
        username=utils.auth.get_username(),
        name="Infer Many Images",
        model=model_job,
        images=paths,
        epoch=epoch,
        layers='none',
        resize=resize,
        )

    # schedule tasks
    scheduler.add_job(inference_job)

    # wait for job to complete
    inference_job.wait_completion()

    # retrieve inference data
    inputs, outputs, _ = inference_job.get_data()

    # set return status code
    status_code = 500 if inference_job.status == 'E' else 200

    # delete job folder and remove from scheduler list
    scheduler.delete_job(inference_job)

    if outputs is not None and len(outputs) < 1:
        # an error occurred
        outputs = None

    if inputs is not None:
        paths = [paths[idx] for idx in inputs['ids']]
        inference_views_html, header_html, app_begin_html, app_end_html = get_inference_visualizations(
            model_job.dataset,
            inputs,
            outputs)
    else:
        inference_views_html = None
        header_html = None
        app_begin_html = None
        app_end_html = None

    if request_wants_json():
        result = {}
        for i, path in enumerate(paths):
            result[path] = dict((name, blob[i].tolist()) for name, blob in outputs.iteritems())
        return flask.jsonify({'outputs': result}), status_code
    else:
        return flask.render_template(
            'models/images/generic/infer_many.html',
            model_job=model_job,
            job=inference_job,
            paths=paths,
            inference_views_html=inference_views_html,
            header_html=header_html,
            app_begin_html=app_begin_html,
            app_end_html=app_end_html,
            ), status_code
Esempio n. 42
0
def image_classification_model_top_n():
    """
    Classify many images and show the top N images per category by confidence
    """
    job = job_from_request()

    image_list = flask.request.files['image_list']
    if not image_list:
        raise werkzeug.exceptions.BadRequest('File upload not found')

    epoch = None
    if 'snapshot_epoch' in flask.request.form:
        epoch = float(flask.request.form['snapshot_epoch'])
    if 'top_n' in flask.request.form and flask.request.form['top_n'].strip():
        top_n = int(flask.request.form['top_n'])
    else:
        top_n = 9
    if 'num_test_images' in flask.request.form and flask.request.form[
            'num_test_images'].strip():
        num_images = int(flask.request.form['num_test_images'])
    else:
        num_images = None

    paths = []
    for line in image_list.readlines():
        line = line.strip()
        if not line:
            continue

        path = None
        # might contain a numerical label at the end
        match = re.match(r'(.*\S)\s+\d+$', line)
        if match:
            path = match.group(1)
        else:
            path = line
        paths.append(path)
    random.shuffle(paths)

    images = []
    dataset = job.train_task().dataset
    for path in paths:
        try:
            image = utils.image.load_image(path)
            image = utils.image.resize_image(
                image,
                dataset.image_dims[0],
                dataset.image_dims[1],
                channels=dataset.image_dims[2],
                resize_mode=dataset.resize_mode,
            )
            images.append(image)
            if num_images and len(images) >= num_images:
                break
        except utils.errors.LoadImageError as e:
            print e

    if not len(images):
        raise werkzeug.exceptions.BadRequest(
            'Unable to load any images from the file')

    labels, scores = job.train_task().infer_many(images, snapshot_epoch=epoch)
    if scores is None:
        raise RuntimeError('An error occured while processing the images')

    indices = (-scores).argsort(axis=0)[:top_n]
    results = []
    for i in xrange(indices.shape[1]):
        result_images = []
        for j in xrange(top_n):
            result_images.append(images[indices[j][i]])
        results.append((labels[i],
                        utils.image.embed_image_html(
                            utils.image.vis_square(np.array(result_images)))))

    return flask.render_template(
        'models/images/classification/top_n.html',
        job=job,
        results=results,
    )
Esempio n. 43
0
def classify_many():
    """
    Classify many images and return the top 5 classifications for each

    Returns JSON when requested: {classifications: {filename: [[category,confidence],...],...}}
    """
    model_job = job_from_request()

    image_list = flask.request.files.get('image_list')
    if not image_list:
        raise werkzeug.exceptions.BadRequest('image_list is a required field')

    if 'image_folder' in flask.request.form and flask.request.form['image_folder'].strip():
        image_folder = flask.request.form['image_folder']
        if not os.path.exists(image_folder):
            raise werkzeug.exceptions.BadRequest('image_folder "%s" does not exit' % image_folder)
    else:
        image_folder = None

    if 'num_test_images' in flask.request.form and flask.request.form['num_test_images'].strip():
        num_test_images = int(flask.request.form['num_test_images'])
    else:
        num_test_images = None

    epoch = None
    if 'snapshot_epoch' in flask.request.form:
        epoch = float(flask.request.form['snapshot_epoch'])

    paths, ground_truths = read_image_list(image_list, image_folder, num_test_images)

    # create inference job
    inference_job = ImageInferenceJob(
        username=utils.auth.get_username(),
        name="Classify Many Images",
        model=model_job,
        images=paths,
        epoch=epoch,
        layers='none'
    )

    # schedule tasks
    scheduler.add_job(inference_job)

    # wait for job to complete
    inference_job.wait_completion()

    # retrieve inference data
    inputs, outputs, _ = inference_job.get_data()

    # set return status code
    status_code = 500 if inference_job.status == 'E' else 200

    # delete job
    scheduler.delete_job(inference_job)

    if outputs is not None and len(outputs) < 1:
        # an error occurred
        outputs = None

    if inputs is not None:
        # retrieve path and ground truth of images that were successfully processed
        paths = [paths[idx] for idx in inputs['ids']]
        ground_truths = [ground_truths[idx] for idx in inputs['ids']]

    # defaults
    classifications = None
    show_ground_truth = None
    top1_accuracy = None
    top5_accuracy = None
    confusion_matrix = None
    per_class_accuracy = None
    labels = None

    if outputs is not None:
        # convert to class probabilities for viewing
        last_output_name, last_output_data = outputs.items()[-1]
        if len(last_output_data) < 1:
            raise werkzeug.exceptions.BadRequest(
                'Unable to classify any image from the file')

        scores = last_output_data
        # take top 5
        indices = (-scores).argsort()[:, :5]

        labels = model_job.train_task().get_labels()
        n_labels = len(labels)

        # remove invalid ground truth
        ground_truths = [x if x is not None and (0 <= x < n_labels) else None for x in ground_truths]

        # how many pieces of ground truth to we have?
        n_ground_truth = len([1 for x in ground_truths if x is not None])
        show_ground_truth = n_ground_truth > 0

        # compute classifications and statistics
        classifications = []
        n_top1_accurate = 0
        n_top5_accurate = 0
        confusion_matrix = np.zeros((n_labels, n_labels), dtype=np.dtype(int))
        for image_index, index_list in enumerate(indices):
            result = []
            if ground_truths[image_index] is not None:
                if ground_truths[image_index] == index_list[0]:
                    n_top1_accurate += 1
                if ground_truths[image_index] in index_list:
                    n_top5_accurate += 1
                if (0 <= ground_truths[image_index] < n_labels) and (0 <= index_list[0] < n_labels):
                    confusion_matrix[ground_truths[image_index], index_list[0]] += 1
            for i in index_list:
                # `i` is a category in labels and also an index into scores
                # ignore prediction if we don't have a label for the corresponding class
                # the user might have set the final fully-connected layer's num_output to
                # too high a value
                if i < len(labels):
                    result.append((labels[i], round(100.0 * scores[image_index, i], 2)))
            classifications.append(result)

        # accuracy
        if show_ground_truth:
            top1_accuracy = round(100.0 * n_top1_accurate / n_ground_truth, 2)
            top5_accuracy = round(100.0 * n_top5_accurate / n_ground_truth, 2)
            per_class_accuracy = []
            for x in xrange(n_labels):
                n_examples = sum(confusion_matrix[x])
                per_class_accuracy.append(
                    round(100.0 * confusion_matrix[x, x] / n_examples, 2) if n_examples > 0 else None)
        else:
            top1_accuracy = None
            top5_accuracy = None
            per_class_accuracy = None

        # replace ground truth indices with labels
        ground_truths = [labels[x] if x is not None and (0 <= x < n_labels) else None for x in ground_truths]

    if request_wants_json():
        joined = dict(zip(paths, classifications))
        return flask.jsonify({'classifications': joined}), status_code
    else:
        return flask.render_template('models/images/classification/classify_many.html',
                                     model_job=model_job,
                                     job=inference_job,
                                     paths=paths,
                                     classifications=classifications,
                                     show_ground_truth=show_ground_truth,
                                     ground_truths=ground_truths,
                                     top1_accuracy=top1_accuracy,
                                     top5_accuracy=top5_accuracy,
                                     confusion_matrix=confusion_matrix,
                                     per_class_accuracy=per_class_accuracy,
                                     labels=labels,
                                     ), status_code
Esempio n. 44
0
def generic_image_model_infer_many():
    """
    Infer many images
    """
    job = job_from_request()

    image_list = flask.request.files.get('image_list')
    if not image_list:
        raise werkzeug.exceptions.BadRequest('image_list is a required field')

    epoch = None
    if 'snapshot_epoch' in flask.request.form:
        epoch = float(flask.request.form['snapshot_epoch'])

    paths = []
    images = []

    db_task = job.train_task().dataset.analyze_db_tasks()[0]
    height = db_task.image_height
    width = db_task.image_width
    if job.train_task().crop_size:
        height = job.train_task().crop_size
        width = job.train_task().crop_size
    channels = db_task.image_channels

    for line in image_list.readlines():
        line = line.strip()
        if not line:
            continue

        path = None
        # might contain a numerical label at the end
        match = re.match(r'(.*\S)\s+\d+$', line)
        if match:
            path = match.group(1)
        else:
            path = line

        try:
            image = utils.image.load_image(path)
            image = utils.image.resize_image(image, height, width,
                    channels = channels,
                    resize_mode = 'squash',
                    )
            paths.append(path)
            images.append(image)
        except utils.errors.LoadImageError as e:
            print e

    if not len(images):
        raise werkzeug.exceptions.BadRequest(
                'Unable to load any images from the file')

    outputs = job.train_task().infer_many(images, snapshot_epoch=epoch)
    if outputs is None:
        raise RuntimeError('An error occured while processing the images')

    if request_wants_json():
        result = {}
        for i, path in enumerate(paths):
            result[path] = dict((name, blob[i].tolist()) for name,blob in outputs.iteritems())
        return flask.jsonify({'outputs': result})
    else:
        return flask.render_template('models/images/generic/infer_many.html',
                paths           = paths,
                network_outputs = outputs,
                )
Esempio n. 45
0
def classify_many():
    """
    Classify many images and return the top 5 classifications for each

    Returns JSON when requested: {classifications: {filename: [[category,confidence],...],...}}
    """
    model_job = job_from_request()

    image_list = flask.request.files.get('image_list')
    if not image_list:
        raise werkzeug.exceptions.BadRequest('image_list is a required field')

    if 'image_folder' in flask.request.form and flask.request.form['image_folder'].strip():
        image_folder = flask.request.form['image_folder']
        if not os.path.exists(image_folder):
            raise werkzeug.exceptions.BadRequest('image_folder "%s" does not exit' % image_folder)
    else:
        image_folder = None

    if 'num_test_images' in flask.request.form and flask.request.form['num_test_images'].strip():
        num_test_images = int(flask.request.form['num_test_images'])
    else:
        num_test_images = None

    epoch = None
    if 'snapshot_epoch' in flask.request.form:
        epoch = float(flask.request.form['snapshot_epoch'])

    paths, ground_truths = read_image_list(image_list, image_folder, num_test_images)

    # create inference job
    inference_job = ImageInferenceJob(
                username    = utils.auth.get_username(),
                name        = "Classify Many Images",
                model       = model_job,
                images      = paths,
                epoch       = epoch,
                layers      = 'none'
                )

    # schedule tasks
    scheduler.add_job(inference_job)

    # wait for job to complete
    inference_job.wait_completion()

    # retrieve inference data
    inputs, outputs, _ = inference_job.get_data()

    # delete job
    scheduler.delete_job(inference_job)

    if outputs is not None and len(outputs) < 1:
        # an error occurred
        outputs = None

    if inputs is not None:
        # retrieve path and ground truth of images that were successfully processed
        paths = [paths[idx] for idx in inputs['ids']]
        ground_truths = [ground_truths[idx] for idx in inputs['ids']]

    classifications = None
    if outputs is not None:
        # convert to class probabilities for viewing
        last_output_name, last_output_data = outputs.items()[-1]
        if len(last_output_data) < 1:
            raise werkzeug.exceptions.BadRequest(
                    'Unable to classify any image from the file')

        scores = last_output_data
        # take top 5
        indices = (-scores).argsort()[:, :5]

        labels = model_job.train_task().get_labels()
        classifications = []
        for image_index, index_list in enumerate(indices):
            result = []
            for i in index_list:
                # `i` is a category in labels and also an index into scores
                result.append((labels[i], round(100.0*scores[image_index, i],2)))
            classifications.append(result)

        # replace ground truth indices with labels
        ground_truths = [labels[x] if x is not None and (0 <= x < len(labels)) else None for x in ground_truths]

    if request_wants_json():
        joined = dict(zip(paths, classifications))
        return flask.jsonify({'classifications': joined})
    else:
        return flask.render_template('models/images/classification/classify_many.html',
                model_job       = model_job,
                job             = inference_job,
                paths           = paths,
                classifications = classifications,
                show_ground_truth= not(ground_truths == [None]*len(ground_truths)),
                ground_truths   = ground_truths
                )
Esempio n. 46
0
def explore():
    """
    Returns a gallery consisting of the images of one of the dbs
    """
    job = job_from_request()
    # Get LMDB
    db = flask.request.args.get('db', 'train')
    if 'train' in db.lower():
        task = job.train_db_task()
    elif 'val' in db.lower():
        task = job.val_db_task()
    elif 'test' in db.lower():
        task = job.test_db_task()
    if task is None:
        raise ValueError('No create_db task for {0}'.format(db))
    if task.status != 'D':
        raise ValueError("This create_db task's status should be 'D' but is '{0}'".format(task.status))
    if task.backend != 'lmdb':
        raise ValueError("Backend is {0} while expected backend is lmdb".format(task.backend))
    db_path = job.path(task.db_name)
    labels = task.get_labels()

    page = int(flask.request.args.get('page', 0))
    size = int(flask.request.args.get('size', 25))
    label = flask.request.args.get('label', None)

    if label is not None:
        try:
            label = int(label)
            label_str = labels[label]
        except ValueError:
            label = None

    reader = DbReader(db_path)
    count = 0
    imgs = []

    min_page = max(0, page - 5)
    if label is None:
        total_entries = reader.total_entries
    else:
        total_entries = task.distribution[str(label)]

    max_page = min((total_entries-1) / size, page + 5)
    pages = range(min_page, max_page + 1)
    for key, value in reader.entries():
        if count >= page*size:
            datum = caffe_pb2.Datum()
            datum.ParseFromString(value)
            if label is None or datum.label == label:
                if datum.encoded:
                    s = StringIO()
                    s.write(datum.data)
                    s.seek(0)
                    img = PIL.Image.open(s)
                else:
                    import caffe.io
                    arr = caffe.io.datum_to_array(datum)
                    # CHW -> HWC
                    arr = arr.transpose((1,2,0))
                    if arr.shape[2] == 1:
                        # HWC -> HW
                        arr = arr[:,:,0]
                    elif arr.shape[2] == 3:
                        # BGR -> RGB
                        # XXX see issue #59
                        arr = arr[:,:,[2,1,0]]
                    img = PIL.Image.fromarray(arr)
                imgs.append({"label":labels[datum.label], "b64": utils.image.embed_image_html(img)})
        if label is None:
            count += 1
        else:
            datum = caffe_pb2.Datum()
            datum.ParseFromString(value)
            if datum.label == int(label):
                count += 1
        if len(imgs) >= size:
            break

    return flask.render_template('datasets/images/explore.html', page=page, size=size, job=job, imgs=imgs, labels=labels, pages=pages, label=label, total_entries=total_entries, db=db)
Esempio n. 47
0
def infer_db():
    """
    Infer a database
    """
    model_job = job_from_request()

    if not 'db_path' in flask.request.form or flask.request.form['db_path'] is None:
        raise werkzeug.exceptions.BadRequest('db_path is a required field')

    db_path = flask.request.form['db_path']

    if not os.path.exists(db_path):
            raise werkzeug.exceptions.BadRequest('DB "%s" does not exit' % db_path)

    epoch = None
    if 'snapshot_epoch' in flask.request.form:
        epoch = float(flask.request.form['snapshot_epoch'])

    # create inference job
    inference_job = ImageInferenceJob(
                username    = utils.auth.get_username(),
                name        = "Infer Many Images",
                model       = model_job,
                images      = db_path,
                epoch       = epoch,
                layers      = 'none',
                )

    # schedule tasks
    scheduler.add_job(inference_job)

    # wait for job to complete
    inference_job.wait_completion()

    # retrieve inference data
    inputs, outputs, _ = inference_job.get_data()

    # delete job folder and remove from scheduler list
    scheduler.delete_job(inference_job)

    if outputs is not None and len(outputs) < 1:
        # an error occurred
        outputs = None

    if inputs is not None:
        keys = [str(idx) for idx in inputs['ids']]
    else:
        keys = None

    if request_wants_json():
        result = {}
        for i, key in enumerate(keys):
            result[key] = dict((name, blob[i].tolist()) for name,blob in outputs.iteritems())
        return flask.jsonify({'outputs': result})
    else:
        return flask.render_template('models/images/generic/infer_db.html',
                model_job       = model_job,
                job             = inference_job,
                keys            = keys,
                network_outputs = outputs,
                )
Esempio n. 48
0
def classify_many():
    """
    Classify many images and return the top 5 classifications for each

    Returns JSON when requested: {classifications: {filename: [[category,confidence],...],...}}
    """
    model_job = job_from_request()

    image_list = flask.request.files.get('image_list')
    if not image_list:
        raise werkzeug.exceptions.BadRequest('image_list is a required field')

    if 'image_folder' in flask.request.form and flask.request.form['image_folder'].strip():
        image_folder = flask.request.form['image_folder']
        if not os.path.exists(image_folder):
            raise werkzeug.exceptions.BadRequest('image_folder "%s" does not exit' % image_folder)
    else:
        image_folder = None

    if 'num_test_images' in flask.request.form and flask.request.form['num_test_images'].strip():
        num_test_images = int(flask.request.form['num_test_images'])
    else:
        num_test_images = None

    epoch = None
    if 'snapshot_epoch' in flask.request.form:
        epoch = float(flask.request.form['snapshot_epoch'])

    paths = []
    ground_truths = []

    for line in image_list.readlines():
        line = line.strip()
        if not line:
            continue

        path = None
        # might contain a numerical label at the end
        match = re.match(r'(.*\S)\s+(\d+)$', line)
        if match:
            path = match.group(1)
            ground_truth = int(match.group(2))
        else:
            path = line
            ground_truth = None

        if not utils.is_url(path) and image_folder and not os.path.isabs(path):
            path = os.path.join(image_folder, path)
        paths.append(path)
        ground_truths.append(ground_truth)

        if num_test_images is not None and len(paths) >= num_test_images:
            break

    # create inference job
    inference_job = ImageInferenceJob(
                username    = utils.auth.get_username(),
                name        = "Classify Many Images",
                model       = model_job,
                images      = paths,
                epoch       = epoch,
                layers      = 'none'
                )

    # schedule tasks
    scheduler.add_job(inference_job)

    # wait for job to complete
    inference_job.wait_completion()

    # retrieve inference data
    inputs, outputs, _ = inference_job.get_data()

    # delete job
    scheduler.delete_job(inference_job)

    if outputs is not None and len(outputs) < 1:
        # an error occurred
        outputs = None

    if inputs is not None:
        # retrieve path and ground truth of images that were successfully processed
        paths = [paths[idx] for idx in inputs['ids']]
        ground_truths = [ground_truths[idx] for idx in inputs['ids']]

    classifications = None
    if outputs is not None:
        # convert to class probabilities for viewing
        last_output_name, last_output_data = outputs.items()[-1]
        if len(last_output_data) < 1:
            raise werkzeug.exceptions.BadRequest(
                    'Unable to classify any image from the file')

        scores = last_output_data
        # take top 5
        indices = (-scores).argsort()[:, :5]

        labels = model_job.train_task().get_labels()
        classifications = []
        for image_index, index_list in enumerate(indices):
            result = []
            for i in index_list:
                # `i` is a category in labels and also an index into scores
                result.append((labels[i], round(100.0*scores[image_index, i],2)))
            classifications.append(result)

        # replace ground truth indices with labels
        ground_truths = [labels[x] if x is not None and (0 <= x < len(labels)) else None for x in ground_truths]

    if request_wants_json():
        joined = dict(zip(paths, classifications))
        return flask.jsonify({'classifications': joined})
    else:
        return flask.render_template('models/images/classification/classify_many.html',
                model_job       = model_job,
                job             = inference_job,
                paths           = paths,
                classifications = classifications,
                show_ground_truth= not(ground_truths == [None]*len(ground_truths)),
                ground_truths   = ground_truths
                )
Esempio n. 49
0
def image_classification_dataset_explore():
    """
    Returns a gallery consisting of the images of one of the dbs
    """
    job = job_from_request()
    # Get LMDB
    db = flask.request.args.get('db', 'train')
    if 'train' in db.lower():
        task = job.train_db_task()
    elif 'val' in db.lower():
        task = job.val_db_task()
    elif 'test' in db.lower():
        task = job.test_db_task()
    if task == None:
        raise ValueError('No create_db task for {0}'.format(db))
    if task.status != 'D':
        raise ValueError(
            "This create_db task's status should be 'D' but is '{0}'".format(
                task.status))
    if task.backend != 'lmdb':
        raise ValueError(
            "Backend is {0} while expected backend is lmdb".format(
                task.backend))
    db_path = job.path(task.db_name)
    labels = task.get_labels()

    page = int(flask.request.args.get('page', 0))
    size = int(flask.request.args.get('size', 25))
    label = flask.request.args.get('label', None)

    if label is not None:
        try:
            label = int(label)
            label_str = labels[label]
        except ValueError:
            label = None

    reader = DbReader(db_path)
    count = 0
    imgs = []

    min_page = max(0, page - 5)
    if label is None:
        total_entries = reader.total_entries
    else:
        total_entries = task.distribution[str(label)]

    max_page = min((total_entries - 1) / size, page + 5)
    pages = range(min_page, max_page + 1)
    for key, value in reader.entries():
        if count >= page * size:
            datum = caffe_pb2.Datum()
            datum.ParseFromString(value)
            if label is None or datum.label == label:
                s = StringIO()
                s.write(datum.data)
                s.seek(0)
                img = PIL.Image.open(s)
                imgs.append({
                    "label": labels[datum.label],
                    "b64": utils.image.image_to_base64(img)
                })
        if label is None:
            count += 1
        else:
            datum = caffe_pb2.Datum()
            datum.ParseFromString(value)
            if datum.label == int(label):
                count += 1
        if len(imgs) >= size:
            break

    return flask.render_template('datasets/images/classification/explore.html',
                                 page=page,
                                 size=size,
                                 job=job,
                                 imgs=imgs,
                                 labels=labels,
                                 pages=pages,
                                 label=label,
                                 total_entries=total_entries,
                                 db=db)
Esempio n. 50
0
def classify_one():
    """
    Classify one image and return the top 5 classifications

    Returns JSON when requested: {predictions: {category: confidence,...}}
    """
    model_job = job_from_request()

    remove_image_path = False
    if 'image_path' in flask.request.form and flask.request.form['image_path']:
        image_path = flask.request.form['image_path']
    elif 'image_file' in flask.request.files and flask.request.files['image_file']:
        outfile = tempfile.mkstemp(suffix='.png')
        flask.request.files['image_file'].save(outfile[1])
        image_path = outfile[1]
        os.close(outfile[0])
        remove_image_path = True
    else:
        raise werkzeug.exceptions.BadRequest('must provide image_path or image_file')

    epoch = None
    if 'snapshot_epoch' in flask.request.form:
        epoch = float(flask.request.form['snapshot_epoch'])

    layers = 'none'
    if 'show_visualizations' in flask.request.form and flask.request.form['show_visualizations']:
        layers = 'all'

    # create inference job
    inference_job = ImageInferenceJob(
        username=utils.auth.get_username(),
        name="Classify One Image",
        model=model_job,
        images=[image_path],
        epoch=epoch,
        layers=layers
    )

    # schedule tasks
    scheduler.add_job(inference_job)

    # wait for job to complete
    inference_job.wait_completion()

    # retrieve inference data
    inputs, outputs, visualizations = inference_job.get_data()

    # set return status code
    status_code = 500 if inference_job.status == 'E' else 200

    # delete job
    scheduler.delete_job(inference_job)

    if remove_image_path:
        os.remove(image_path)

    image = None
    predictions = []
    if inputs is not None and len(inputs['data']) == 1:
        image = utils.image.embed_image_html(inputs['data'][0])
        # convert to class probabilities for viewing
        last_output_name, last_output_data = outputs.items()[-1]

        if len(last_output_data) == 1:
            scores = last_output_data[0].flatten()
            indices = (-scores).argsort()
            labels = model_job.train_task().get_labels()
            predictions = []
            for i in indices:
                # ignore prediction if we don't have a label for the corresponding class
                # the user might have set the final fully-connected layer's num_output to
                # too high a value
                if i < len(labels):
                    predictions.append((labels[i], scores[i]))
            predictions = [(p[0], round(100.0 * p[1], 2)) for p in predictions[:5]]

    if request_wants_json():
        return flask.jsonify({'predictions': predictions}), status_code
    else:
        return flask.render_template('models/images/classification/classify_one.html',
                                     model_job=model_job,
                                     job=inference_job,
                                     image_src=image,
                                     predictions=predictions,
                                     visualizations=visualizations,
                                     total_parameters=sum(v['param_count']
                                                          for v in visualizations if v['vis_type'] == 'Weights'),
                                     ), status_code
Esempio n. 51
0
def infer_extension():
    """
    Perform inference using the data from an extension inference form
    """
    model_job = job_from_request()

    inference_db_job = None
    try:
        # create an inference database
        inference_db_job = create_inference_db(model_job)
        db_path = inference_db_job.get_feature_db_path(constants.TEST_DB)

        # create database creation job
        epoch = None
        if 'snapshot_epoch' in flask.request.form:
            epoch = float(flask.request.form['snapshot_epoch'])

        layers = 'none'
        if 'show_visualizations' in flask.request.form and flask.request.form['show_visualizations']:
            layers = 'all'

        # create inference job
        inference_job = ImageInferenceJob(
            username=utils.auth.get_username(),
            name="Inference",
            model=model_job,
            images=db_path,
            epoch=epoch,
            layers=layers,
            resize=False,
            )

        # schedule tasks
        scheduler.add_job(inference_job)

        # wait for job to complete
        inference_job.wait_completion()

    finally:
        if inference_db_job:
            scheduler.delete_job(inference_db_job)

    # retrieve inference data
    inputs, outputs, model_visualization = inference_job.get_data()

    # set return status code
    status_code = 500 if inference_job.status == 'E' else 200

    # delete job folder and remove from scheduler list
    scheduler.delete_job(inference_job)

    if outputs is not None and len(outputs) < 1:
        # an error occurred
        outputs = None

    if inputs is not None:
        keys = [str(idx) for idx in inputs['ids']]
        inference_views_html, header_html, app_begin_html, app_end_html = get_inference_visualizations(
            model_job.dataset,
            inputs,
            outputs)
    else:
        inference_views_html = None
        header_html = None
        keys = None
        app_begin_html = None
        app_end_html = None

    if request_wants_json():
        result = {}
        for i, key in enumerate(keys):
            result[key] = dict((name, blob[i].tolist()) for name,blob in outputs.iteritems())
        return flask.jsonify({'outputs': result}), status_code
    else:
        return flask.render_template(
            'models/images/generic/infer_extension.html',
            model_job=model_job,
            job=inference_job,
            keys=keys,
            inference_views_html=inference_views_html,
            header_html=header_html,
            app_begin_html=app_begin_html,
            app_end_html=app_end_html,
            visualizations=model_visualization,
            total_parameters=sum(v['param_count'] for v in model_visualization
                                 if v['vis_type'] == 'Weights'),
            ), status_code
Esempio n. 52
0
def top_n():
    """
    Classify many images and show the top N images per category by confidence
    """
    model_job = job_from_request()

    image_list = flask.request.files['image_list']
    if not image_list:
        raise werkzeug.exceptions.BadRequest('File upload not found')

    epoch = None
    if 'snapshot_epoch' in flask.request.form:
        epoch = float(flask.request.form['snapshot_epoch'])
    if 'top_n' in flask.request.form and flask.request.form['top_n'].strip():
        top_n = int(flask.request.form['top_n'])
    else:
        top_n = 9

    if 'image_folder' in flask.request.form and flask.request.form['image_folder'].strip():
        image_folder = flask.request.form['image_folder']
        if not os.path.exists(image_folder):
            raise werkzeug.exceptions.BadRequest('image_folder "%s" does not exit' % image_folder)
    else:
        image_folder = None

    if 'num_test_images' in flask.request.form and flask.request.form['num_test_images'].strip():
        num_test_images = int(flask.request.form['num_test_images'])
    else:
        num_test_images = None

    paths, _ = read_image_list(image_list, image_folder, num_test_images)

    # create inference job
    inference_job = ImageInferenceJob(
        username=utils.auth.get_username(),
        name="TopN Image Classification",
        model=model_job,
        images=paths,
        epoch=epoch,
        layers='none'
    )

    # schedule tasks
    scheduler.add_job(inference_job)

    # wait for job to complete
    inference_job.wait_completion()

    # retrieve inference data
    inputs, outputs, _ = inference_job.get_data()

    # delete job
    scheduler.delete_job(inference_job)

    results = None
    if outputs is not None and len(outputs) > 0:
        # convert to class probabilities for viewing
        last_output_name, last_output_data = outputs.items()[-1]
        scores = last_output_data

        if scores is None:
            raise RuntimeError('An error occurred while processing the images')

        labels = model_job.train_task().get_labels()
        images = inputs['data']
        indices = (-scores).argsort(axis=0)[:top_n]
        results = []
        # Can't have more images per category than the number of images
        images_per_category = min(top_n, len(images))
        # Can't have more categories than the number of labels or the number of outputs
        n_categories = min(indices.shape[1], len(labels))
        for i in xrange(n_categories):
            result_images = []
            for j in xrange(images_per_category):
                result_images.append(images[indices[j][i]])
            results.append((
                labels[i],
                utils.image.embed_image_html(
                    utils.image.vis_square(np.array(result_images),
                                           colormap='white')
                )
            ))

    return flask.render_template('models/images/classification/top_n.html',
                                 model_job=model_job,
                                 job=inference_job,
                                 results=results,
                                 )
Esempio n. 53
0
def infer_db():
    """
    Infer a database
    """
    model_job = job_from_request()

    if not 'db_path' in flask.request.form or flask.request.form['db_path'] is None:
        raise werkzeug.exceptions.BadRequest('db_path is a required field')

    db_path = flask.request.form['db_path']

    if not os.path.exists(db_path):
            raise werkzeug.exceptions.BadRequest('DB "%s" does not exit' % db_path)

    epoch = None
    if 'snapshot_epoch' in flask.request.form:
        epoch = float(flask.request.form['snapshot_epoch'])

    if 'dont_resize' in flask.request.form and flask.request.form['dont_resize']:
        resize = False
    else:
        resize = True

    # create inference job
    inference_job = ImageInferenceJob(
        username=utils.auth.get_username(),
        name="Infer Many Images",
        model=model_job,
        images=db_path,
        epoch=epoch,
        layers='none',
        resize=resize,
        )

    # schedule tasks
    scheduler.add_job(inference_job)

    # wait for job to complete
    inference_job.wait_completion()

    # retrieve inference data
    inputs, outputs, _ = inference_job.get_data()

    # set return status code
    status_code = 500 if inference_job.status == 'E' else 200

    # delete job folder and remove from scheduler list
    scheduler.delete_job(inference_job)

    if outputs is not None and len(outputs) < 1:
        # an error occurred
        outputs = None

    if inputs is not None:
        keys = [str(idx) for idx in inputs['ids']]
        inference_views_html, header_html, app_begin_html, app_end_html = get_inference_visualizations(
            model_job.dataset,
            inputs,
            outputs)
    else:
        inference_views_html = None
        header_html = None
        keys = None
        app_begin_html = None
        app_end_html = None

    if request_wants_json():
        result = {}
        for i, key in enumerate(keys):
            result[key] = dict((name, blob[i].tolist()) for name,blob in outputs.iteritems())
        return flask.jsonify({'outputs': result}), status_code
    else:
        return flask.render_template(
            'models/images/generic/infer_db.html',
            model_job=model_job,
            job=inference_job,
            keys=keys,
            inference_views_html=inference_views_html,
            header_html=header_html,
            app_begin_html=app_begin_html,
            app_end_html=app_end_html,
            ), status_code