def sample(self, bqm, *, components=None, **parameters):
        """Sample from the provided binary quadratic model.

        Args:
            bqm (:class:`dimod.BinaryQuadraticModel`):
                Binary quadratic model to be sampled from.

            components (list(set)):
                A list of disjoint set of variables that fully partition the variables

            **parameters:
                Parameters for the sampling method, specified by the child sampler.

        Returns:
            :class:`dimod.SampleSet`

        """
        # make sure the BQM is shapeable
        bqm = as_bqm(bqm, cls=[AdjVectorBQM, AdjDictBQM])

        # solve the problem on the child system
        child = self.child
        variables = bqm.variables
        if components is None:
            components = list(connected_components(bqm))
        if isinstance(components, set):
            components = [components]
        sampleset = None
        fixed_value = min(bqm.vartype.value)
        for component in components:
            bqm_copy = bqm.copy()
            bqm_copy.fix_variables(
                {i: fixed_value
                 for i in (variables - component)})
            if sampleset is None:
                # here .truncate(1) is used to pick the best solution only. The other options
                # for future development is to combine all sample with all.
                # This way you'd get the same behaviour as the ExactSolver
                sampleset = child.sample(bqm_copy, **parameters).truncate(1)
            else:
                sampleset = append_variables(
                    sampleset.truncate(1),
                    child.sample(bqm_copy, **parameters).truncate(1))

        if sampleset is None:
            return SampleSet.from_samples_bqm({}, bqm)
        else:
            return SampleSet.from_samples_bqm(sampleset, bqm)
Esempio n. 2
0
    def sample(self, bqm, fixed_variables=None, **parameters):
        """Sample from the provided binary quadratic model.

        Args:
            bqm (:obj:`dimod.BinaryQuadraticModel`):
                Binary quadratic model to be sampled from.

            fixed_variables (dict):
                A dictionary of variable assignments.

            **parameters:
                Parameters for the sampling method, specified by the child sampler.

        Returns:
            :obj:`dimod.SampleSet`

        """

        if not fixed_variables:  # None is falsey
            return self.child.sample(bqm, **parameters)

        # make sure that we're shapeable and that we have a BQM we can mutate
        bqm_copy = as_bqm(bqm, cls=[AdjVectorBQM, AdjDictBQM, AdjMapBQM],
                          copy=True)

        bqm_copy.fix_variables(fixed_variables)

        sampleset = self.child.sample(bqm_copy, **parameters)

        def _hook(sampleset):
            # make RoofDualityComposite non-blocking

            if sampleset.variables:
                if len(sampleset):
                    return sampleset.append_variables(fixed_variables)
                else:
                    return sampleset.from_samples_bqm((np.empty((0, len(bqm))),
                                                       bqm.variables), bqm=bqm)

            # there are only fixed variables, make sure that the correct number
            # of samples are returned
            samples = [fixed_variables]*max(len(sampleset), 1)

            return sampleset.from_samples_bqm(samples, bqm=bqm)

        return SampleSet.from_future(sampleset, _hook)
    def sample(self, bqm, **parameters):
        """Sample from the provided binary quadratic model.

        Args:
            bqm (:class:`dimod.BinaryQuadraticModel`):
                Binary quadratic model to be sampled from.

            fixed_variables (dict, optional, default=None):
                A dictionary of variable assignments used when ``self.algorithm`` 
                is 'explicit'.

            strict (bool, optional, default=True):
                Only used if ``self.algorithm`` is 'roof_duality'. If True, only 
                fixes variables for which assignments are true for all minimizing 
                points (strong persistency). If False, also fixes variables for 
                which the assignments are true for some but not all minimizing 
                points (weak persistency).

            **parameters:
                Parameters for the sampling method, specified by the child sampler.

        Returns:
            :class:`dimod.SampleSet`

        """

        if self.algorithm == 'explicit':
            fixed_variables = parameters.pop('fixed_variables', None)
            if fixed_variables is None:
                msg = (
                    "No fixed_variables passed in when algorithm is 'explicit'. "
                    "Passing problem to child sampler without fixing.")
                warnings.warn(msg)
                return self.child.sample(bqm, **parameters)
        elif self.algorithm == 'roof_duality':
            fixed_variables = roof_duality(bqm,
                                           strict=parameters.pop(
                                               'strict', True))

        # make sure that we're shapeable and that we have a BQM we can mutate
        bqm_copy = as_bqm(bqm, cls=[AdjVectorBQM, AdjDictBQM], copy=True)

        bqm_copy.fix_variables(fixed_variables)

        sampleset = self.child.sample(bqm_copy, **parameters)

        def _hook(sampleset):
            # make RoofDualityComposite non-blocking

            if sampleset.variables:
                if len(sampleset):
                    return append_variables(sampleset, fixed_variables)
                else:
                    return sampleset.from_samples_bqm((np.empty(
                        (0, len(bqm))), bqm.variables),
                                                      bqm=bqm)

            # there are only fixed variables, make sure that the correct number
            # of samples are returned
            samples = [fixed_variables] * max(len(sampleset), 1)

            return sampleset.from_samples_bqm(samples, bqm=bqm)

        return SampleSet.from_future(sampleset, _hook)