Esempio n. 1
0
def test_benchmark_cyclic_4(method):
    with using(groebner=method):
        R,  a, b, c, d = ring('a b c d', ZZ, lex)

        I = [a + b + c + d,
             a*b + a*d + b*c + b*d,
             a*b*c + a*b*d + a*c*d + b*c*d,
             a*b*c*d - 1]

        assert groebner(I, R) == [
            4*a + 3*d**9 - 4*d**5 - 3*d,
            4*b + 4*c - 3*d**9 + 4*d**5 + 7*d,
            4*c**2 + 3*d**10 - 4*d**6 - 3*d**2,
            4*c*d**4 + 4*c - d**9 + 4*d**5 + 5*d, d**12 - d**8 - d**4 + 1
        ]

        R,  a, b, c, d = ring('a b c d', ZZ, grlex)
        I = [i.set_ring(R) for i in I]

        assert groebner(I, R) == [
            3*b*c - c**2 + d**6 - 3*d**2,
            -b + 3*c**2*d**3 - c - d**5 - 4*d,
            -b + 3*c*d**4 + 2*c + 2*d**5 + 2*d,
            c**4 + 2*c**2*d**2 - d**4 - 2,
            c**3*d + c*d**3 + d**4 + 1,
            b*c**2 - c**3 - c**2*d - 2*c*d**2 - d**3,
            b**2 - c**2, b*d + c**2 + c*d + d**2,
            a + b + c + d
        ]
Esempio n. 2
0
def test_benchmark_katsura_4(method):
    with using(groebner=method):
        R,  x0, x1, x2, x3 = ring('x:4', ZZ, lex)
        I = [x0 + 2*x1 + 2*x2 + 2*x3 - 1,
             x0**2 + 2*x1**2 + 2*x2**2 + 2*x3**2 - x0,
             2*x0*x1 + 2*x1*x2 + 2*x2*x3 - x1,
             x1**2 + 2*x0*x2 + 2*x1*x3 - x2]

        assert groebner(I, R) == [
            5913075*x0 - 159690237696*x3**7 + 31246269696*x3**6 + 27439610544*x3**5 - 6475723368*x3**4 - 838935856*x3**3 + 275119624*x3**2 + 4884038*x3 - 5913075,
            1971025*x1 - 97197721632*x3**7 + 73975630752*x3**6 - 12121915032*x3**5 - 2760941496*x3**4 + 814792828*x3**3 - 1678512*x3**2 - 9158924*x3,
            5913075*x2 + 371438283744*x3**7 - 237550027104*x3**6 + 22645939824*x3**5 + 11520686172*x3**4 - 2024910556*x3**3 - 132524276*x3**2 + 30947828*x3,
            128304*x3**8 - 93312*x3**7 + 15552*x3**6 + 3144*x3**5 -
            1120*x3**4 + 36*x3**3 + 15*x3**2 - x3,
        ]

        R,  x0, x1, x2, x3 = ring('x:4', ZZ, grlex)
        I = [i.set_ring(R) for i in I]

        assert groebner(I, R) == [
            393*x1 - 4662*x2**2 + 4462*x2*x3 - 59*x2 + 224532*x3**4 - 91224*x3**3 - 678*x3**2 + 2046*x3,
            -x1 + 196*x2**3 - 21*x2**2 + 60*x2*x3 - 18*x2 - 168*x3**3 + 83*x3**2 - 9*x3,
            -6*x1 + 1134*x2**2*x3 - 189*x2**2 - 466*x2*x3 + 32*x2 - 630*x3**3 + 57*x3**2 + 51*x3,
            33*x1 + 63*x2**2 + 2268*x2*x3**2 - 188*x2*x3 + 34*x2 + 2520*x3**3 - 849*x3**2 + 3*x3,
            7*x1**2 - x1 - 7*x2**2 - 24*x2*x3 + 3*x2 - 15*x3**2 + 5*x3,
            14*x1*x2 - x1 + 14*x2**2 + 18*x2*x3 - 4*x2 + 6*x3**2 - 2*x3,
            14*x1*x3 - x1 + 7*x2**2 + 32*x2*x3 - 4*x2 + 27*x3**2 - 9*x3,
            x0 + 2*x1 + 2*x2 + 2*x3 - 1,
        ]
Esempio n. 3
0
def test_sympyissue_23174():
    _, x = ring('x', FF(2))

    f = (x**16 + x**15 + x**14 + x**13 + x**12 + x**11 + x**10 + x**9 + x**8 +
         x**7 + x**6 + x**5 + x**4 + x**3 + x**2 + x + 1)
    r = (1, [(x**8 + x**5 + x**4 + x**3 + 1, 1),
             (x**8 + x**7 + x**6 + x**4 + x**2 + x + 1, 1)])

    with using(gf_factor_method='zassenhaus'):
        assert f.factor_list() == r
Esempio n. 4
0
def test_benchmark_minimal_polynomial(method):
    with using(groebner=method):
        R,  x, y, z = ring('x y z', QQ, lex)

        F = [x**3 + x + 1, y**2 + y + 1, (x + y) * z - (x**2 + y)]
        G = [x + 155*z**5/2067 - 355*z**4/689 + 6062*z**3/2067 - 3687*z**2/689 + 6878*z/2067 - QQ(25, 53),
             y + 4*z**5/53 - 91*z**4/159 + 523*z**3/159 - 387*z**2/53 + 1043*z/159 - QQ(308, 159),
             z**6 - 7*z**5 + 41*z**4 - 82*z**3 + 89*z**2 - 46*z + 13]

        assert groebner(F, R) == G
Esempio n. 5
0
def test_sympyissue_16620():
    _, x = ring('x', FF(2))

    f = x**17 + 1
    g = (1, [(x + 1, 1), (x**8 + x**5 + x**4 + x**3 + 1, 1),
             (x**8 + x**7 + x**6 + x**4 + x**2 + x + 1, 1)])

    for method in ('berlekamp', 'zassenhaus', 'shoup'):
        with using(gf_factor_method=method):
            assert f.factor_list() == g

    f = x**31 + 1
    g = (1, [(x + 1, 1), (x**5 + x**2 + 1, 1), (x**5 + x**3 + 1, 1),
             (x**5 + x**3 + x**2 + x + 1, 1), (x**5 + x**4 + x**2 + x + 1, 1),
             (x**5 + x**4 + x**3 + x + 1, 1),
             (x**5 + x**4 + x**3 + x**2 + 1, 1)])

    for method in ('berlekamp', 'zassenhaus', 'shoup'):
        with using(gf_factor_method=method):
            assert f.factor_list() == g
Esempio n. 6
0
def test_dmp_ext_factor(method):
    with using(aa_factor_method=method):
        R, x = ring('x', QQ.algebraic_field(I))

        assert R(0).factor_list() == (0, [])
        assert (x + 1).factor_list() == (1, [(x + 1, 1)])
        assert (2 * x + 2).factor_list() == (2, [(x + 1, 1)])
        assert (7 * x**4 + 1).factor_list() == (7, [(x**4 + QQ(1, 7), 1)])
        assert (x**4 + 1).factor_list() == (1, [(x**2 - I, 1), (x**2 + I, 1)])
        assert (4 * x**2 + 9).factor_list() == (4, [(x - 3 * I / 2, 1),
                                                    (x + 3 * I / 2, 1)])
        assert (4 * x**4 + 8 * x**3 + 77 * x**2 + 18 * x +
                153).factor_list() == (4, [(x - 3 * I / 2, 1),
                                           (x + 1 + 4 * I, 1),
                                           (x + 1 - 4 * I, 1),
                                           (x + 3 * I / 2, 1)])
        assert (x**2 + 1).factor_list() == (1, [(x - I, 1), (x + I, 1)])

        R, x = ring('x', QQ.algebraic_field(sqrt(2)))

        assert (x**4 + 1).factor_list() == (1, [(x**2 - sqrt(2) * x + 1, 1),
                                                (x**2 + sqrt(2) * x + 1, 1)])

        f = x**2 + 2 * sqrt(2) * x + 2

        assert f.factor_list() == (1, [(x + sqrt(2), 2)])
        assert (f**3).factor_list() == (1, [(x + sqrt(2), 6)])

        f *= 2

        assert f.factor_list() == (2, [(x + sqrt(2), 2)])
        assert (f**3).factor_list() == (8, [(x + sqrt(2), 6)])

        R, x, y = ring('x y', QQ.algebraic_field(sqrt(2)))

        assert R(0).factor_list() == (0, [])
        assert (x + 1).factor_list() == (1, [(x + 1, 1)])
        assert (2 * x + 2).factor_list() == (2, [(x + 1, 1)])
        assert (x**2 - 2 * y**2).factor_list() == (1, [(x - sqrt(2) * y, 1),
                                                       (x + sqrt(2) * y, 1)])
        assert (2 * x**2 - 4 * y**2).factor_list() == (2,
                                                       [(x - sqrt(2) * y, 1),
                                                        (x + sqrt(2) * y, 1)])
Esempio n. 7
0
def test_benchmark_katsura_3(method):
    with using(groebner=method):
        R,  x0, x1, x2 = ring('x:3', ZZ, lex)
        I = [x0 + 2*x1 + 2*x2 - 1,
             x0**2 + 2*x1**2 + 2*x2**2 - x0,
             2*x0*x1 + 2*x1*x2 - x1]

        assert groebner(I, R) == [
            -7 + 7*x0 + 8*x2 + 158*x2**2 - 420*x2**3,
            7*x1 + 3*x2 - 79*x2**2 + 210*x2**3,
            x2 + x2**2 - 40*x2**3 + 84*x2**4,
        ]

        R,  x0, x1, x2 = ring('x:3', ZZ, grlex)
        I = [i.set_ring(R) for i in I]

        assert groebner(I, R) == [
            7*x1 + 3*x2 - 79*x2**2 + 210*x2**3,
            -x1 + x2 - 3*x2**2 + 5*x1**2,
            -x1 - 4*x2 + 10*x1*x2 + 12*x2**2,
            -1 + x0 + 2*x1 + 2*x2,
        ]
Esempio n. 8
0
def test_dmp_gcd():
    R, x = ring('x', FF(5))

    f = 3 * x**2 + 2 * x + 4
    g = 2 * x**2 + 2 * x + 3

    assert f.cofactors(g) == (x + 3, 3 * x + 3, 2 * x + 1)

    R, x = ring('x', FF(11))

    assert R(0).cofactors(R(0)) == (0, 0, 0)
    assert R(2).cofactors(R(0)) == (1, 2, 0)
    assert R(0).cofactors(R(2)) == (1, 0, 2)
    assert R(2).cofactors(R(2)) == (1, 2, 2)

    assert R(0).cofactors(x) == (x, 0, 1)
    assert x.cofactors(R(0)) == (x, 1, 0)

    assert (3 * x).cofactors(3 * x) == (x, 3, 3)
    assert (x**2 + 8 * x + 7).cofactors(x**3 + 7 * x**2 + x + 7) == (x + 7,
                                                                     x + 1,
                                                                     x**2 + 1)

    R, x = ring('x', ZZ)

    for test in (True, False):
        for method in ('prs', 'modgcd'):
            with using(use_heu_gcd=test, fallback_gcd_zz_method=method):
                assert R(0).cofactors(R(0)) == (0, 0, 0)
                assert R(0).cofactors(x) == (x, 0, 1)
                assert x.cofactors(R(0)) == (x, 1, 0)
                assert R(0).cofactors(-x) == (x, 0, -1)
                assert (-x).cofactors(R(0)) == (x, -1, 0)
                assert (2 * x).cofactors(R(2)) == (2, x, 1)
                assert R(2).cofactors(R(0)) == (2, 1, 0)
                assert R(-2).cofactors(R(0)) == (2, -1, 0)
                assert R(0).cofactors(R(-2)) == (2, 0, -1)
                assert R(0).cofactors(2 * x + 4) == (2 * x + 4, 0, 1)
                assert (2 * x + 4).cofactors(R(0)) == (2 * x + 4, 1, 0)
                assert R(2).cofactors(R(2)) == (2, 1, 1)
                assert R(-2).cofactors(R(2)) == (2, -1, 1)
                assert R(2).cofactors(R(-2)) == (2, 1, -1)
                assert R(-2).cofactors(R(-2)) == (2, -1, -1)
                assert (x**2 + 2 * x + 1).cofactors(R(1)) == (1,
                                                              x**2 + 2 * x + 1,
                                                              1)
                assert (x**2 + 2 * x + 1).cofactors(R(2)) == (1,
                                                              x**2 + 2 * x + 1,
                                                              2)
                assert (2 * x**2 + 4 * x + 2).cofactors(R(2)) == (2, x**2 +
                                                                  2 * x + 1, 1)
                assert R(2).cofactors(2 * x**2 + 4 * x + 2) == (2, 1, x**2 +
                                                                2 * x + 1)
                assert (2 * x**2 + 4 * x + 2).cofactors(x + 1) == (x + 1,
                                                                   2 * x + 2,
                                                                   1)
                assert (x + 1).cofactors(2 * x**2 + 4 * x + 2) == (x + 1, 1,
                                                                   2 * x + 2)
                assert (x - 31).cofactors(x) == (1, x - 31, x)

                f, g = 2 * x + 2, 6 * x**2 - 6

                assert f.cofactors(g) == (2 * x + 2, 1, 3 * x - 3)

                f, g = [1000000000000 * x + 998549000000] * 2

                assert f.cofactors(g) == (f, 1, 1)

                f, g = 999530000000 * x + 1000000000000, 999530000000 * x + 999999000000

                assert f.cofactors(g) == (1000000, 999530 * x + 1000000,
                                          999530 * x + 999999)

                f = x**2 - 1
                g = x**2 - 3 * x + 2

                assert f.cofactors(g) == (x - 1, x + 1, x - 2)

                f = x**4 + 8 * x**3 + 21 * x**2 + 22 * x + 8
                g = x**3 + 6 * x**2 + 11 * x + 6

                assert f.cofactors(g) == (x**2 + 3 * x + 2, x**2 + 5 * x + 4,
                                          x + 3)

                f = x**4 - 4
                g = x**4 + 4 * x**2 + 4

                assert f.cofactors(g) == (x**2 + 2, x**2 - 2, x**2 + 2)

                f = x**8 + x**6 - 3 * x**4 - 3 * x**3 + 8 * x**2 + 2 * x - 5
                g = 3 * x**6 + 5 * x**4 - 4 * x**2 - 9 * x + 21

                assert f.cofactors(g) == (1, f, g)

                f = (
                    -352518131239247345597970242177235495263669787845475025293906825864749649589178600387510272
                    * x**49 +
                    46818041807522713962450042363465092040687472354933295397472942006618953623327997952
                    * x**42 +
                    378182690892293941192071663536490788434899030680411695933646320291525827756032
                    * x**35 +
                    112806468807371824947796775491032386836656074179286744191026149539708928
                    * x**28 -
                    12278371209708240950316872681744825481125965781519138077173235712
                    * x**21 +
                    289127344604779611146960547954288113529690984687482920704 *
                    x**14 +
                    19007977035740498977629742919480623972236450681 * x**7 +
                    311973482284542371301330321821976049)

                h = (
                    365431878023781158602430064717380211405897160759702125019136
                    * x**21 +
                    197599133478719444145775798221171663643171734081650688 *
                    x**14 -
                    9504116979659010018253915765478924103928886144 * x**7 -
                    311973482284542371301330321821976049)
                cff = (-964661685087874498642420170752 * x**28 +
                       649736296036977287118848 * x**21 +
                       658473216967637120 * x**14 - 30463679113 * x**7 - 1)
                cfg = (-47268422569305850433478588366848 * x**27 +
                       30940259392972115602096128 * x**20 +
                       18261628279718027904 * x**13 - 426497272383 * x**6)

                assert f.cofactors(f.diff()) == (h, cff, cfg)

                f = 1317378933230047068160 * x + 2945748836994210856960
                g = 120352542776360960 * x + 269116466014453760

                H, cff, cfg = 120352542776360960 * x + 269116466014453760, 10946, 1

                assert f.cofactors(g) == (H, cff, cfg)

                with using(heu_gcd_max=0):
                    assert f.cofactors(g) == (H, cff, cfg)

    R, x = ring('x', QQ)

    for test in (True, False):
        with using(use_heu_gcd=test, fallback_gcd_zz_method='prs'):
            f = x**8 + x**6 - 3 * x**4 - 3 * x**3 + 8 * x**2 + 2 * x - 5
            g = 3 * x**6 + 5 * x**4 - 4 * x**2 - 9 * x + 21

            assert f.cofactors(g) == (1, f, g)

            assert R(0).cofactors(R(0)) == (0, 0, 0)

            f, g = x**2 / 2 + x + QQ(1, 2), x / 2 + QQ(1, 2)

            assert f.cofactors(g) == (x + 1, g, QQ(1, 2))

            f, g = x**2 - 1, x**2 - 3 * x + 2

            assert f.cofactors(g) == (x - 1, x + 1, x - 2)

    R, x = ring('x', QQ.algebraic_field(sqrt(2)))

    for method in ('modgcd', 'prs'):
        with using(gcd_aa_method=method):
            f, g = 2 * x, R(2)

            assert f.cofactors(g) == (1, f, g)

            f, g = 2 * x, R(sqrt(2))

            assert f.cofactors(g) == (1, f, g)

            f, g = 2 * x + 2, 6 * x**2 - 6

            assert f.cofactors(g) == (x + 1, 2, 6 * x - 6)

    R, x = ring('x', QQ.algebraic_field(sqrt(2)**(-1) * sqrt(3)))

    for method in ('modgcd', 'prs'):
        with using(gcd_aa_method=method):
            f, g = x + 1, x - 1

            assert f.cofactors(g) == (1, f, g)

    R, x = ring('x', CC)

    f, g = x**2 - 1, x**3 - 3 * x + 2

    assert f.cofactors(g) == (x - 1, x + 1, x**2 + x - 2)

    R, x, y = ring('x y', ZZ)

    for test in (True, False):
        for method in ('prs', 'modgcd'):
            with using(use_heu_gcd=test, fallback_gcd_zz_method=method):
                assert R(0).cofactors(R(0)) == (0, 0, 0)
                assert R(2).cofactors(R(0)) == (2, 1, 0)
                assert R(-2).cofactors(R(0)) == (2, -1, 0)
                assert R(0).cofactors(R(-2)) == (2, 0, -1)
                assert R(0).cofactors(2 * x + 4) == (2 * x + 4, 0, 1)
                assert (2 * x).cofactors(R(2)) == (2, x, 1)
                assert (2 * x + 4).cofactors(R(0)) == (2 * x + 4, 1, 0)
                assert R(2).cofactors(R(2)) == (2, 1, 1)
                assert R(-2).cofactors(R(2)) == (2, -1, 1)
                assert R(2).cofactors(R(-2)) == (2, 1, -1)
                assert R(-2).cofactors(R(-2)) == (2, -1, -1)
                assert (x**2 + 2 * x + 1).cofactors(R(1)) == (1,
                                                              x**2 + 2 * x + 1,
                                                              1)
                assert (x**2 + 2 * x + 1).cofactors(R(2)) == (1,
                                                              x**2 + 2 * x + 1,
                                                              2)
                assert (2 * x**2 + 4 * x + 2).cofactors(R(2)) == (2, x**2 +
                                                                  2 * x + 1, 1)
                assert R(2).cofactors(2 * x**2 + 4 * x + 2) == (2, 1, x**2 +
                                                                2 * x + 1)

                f, g = 2 * x**2 + 4 * x + 2, x + 1

                assert f.cofactors(g) == (g, 2 * x + 2, 1)
                assert g.cofactors(f) == (g, 1, 2 * x + 2)

                with using(heu_gcd_max=0):
                    assert f.cofactors(g) == (g, 2 * x + 2, 1)

                f = x**4 + 8 * x**3 + 21 * x**2 + 22 * x + 8
                g = x**3 + 6 * x**2 + 11 * x + 6

                assert f.cofactors(g) == (x**2 + 3 * x + 2, x**2 + 5 * x + 4,
                                          x + 3)

                f, g = x + 2 * y, x + y

                assert f.cofactors(g) == (1, f, g)

                f, g = x**2 + 2 * x * y + y**2, x**2 + x * y

                assert f.cofactors(g) == (x + y, x + y, x)

                f, g = x**2 + 2 * x * y + y**2, x**3 + y**3

                assert f.cofactors(g) == (x + y, x + y, x**2 - x * y + y**2)

                f, g = x * y**2 + 2 * x * y + x, x * y**3 + x

                assert f.cofactors(g) == (x * y + x, y + 1, y**2 - y + 1)

                f, g = x**2 * y**2 + x**2 * y + 1, x * y**2 + x * y + 1

                assert f.cofactors(g) == (1, f, g)

                f = 2 * x * y**2 + 4 * x * y + 2 * x + y**2 + 2 * y + 1
                g = 2 * x * y**3 + 2 * x + y**3 + 1

                assert f.cofactors(g) == (2 * x * y + 2 * x + y + 1, y + 1,
                                          y**2 - y + 1)

                f = 2 * x**2 + 4 * x * y - 2 * x - 4 * y
                g = x**2 + x - 2

                assert f.cofactors(g) == (x - 1, 2 * x + 4 * y, x + 2)

                f = 2 * x**2 + 2 * x * y - 3 * x - 3 * y
                g = 4 * x * y - 2 * x + 4 * y**2 - 2 * y

                assert f.cofactors(g) == (x + y, 2 * x - 3, 4 * y - 2)

                f = (
                    -17434367009167300000000000000000000000000000000000000000000000000000000
                    * x**4 * y -
                    250501827896299135568887342575961783764139560000000000000000000000000000000000000000000
                    * x**3 * y -
                    2440935909299672540738135183426056447877858000000000000000000000000000000
                    * x**3 -
                    1349729941723537919695626818065131519270095220127010623905326719279566297660000000000000000000000000000
                    * x**2 * y -
                    26304033868956978374552886858060487282904504027042515077682955951658838800000000000000000
                    * x**2 -
                    3232215785736369696036755035364398565076440134133908303058376297547504030528179314849416971379040931276000000000000000
                    * x * y -
                    94485916261760032526508027937078714464844205539023800247528621905831259414691631156161537919255129011800
                    * x -
                    2902585888465621357542575571971656665554321652262249362701116665830760628936600958940851960635161420991047110815678789984677193092993
                    * y -
                    113133324167442997472440652189550843502029192913459268196939183295294085146407870078840385860571627108778756267503630290
                )
                g = (
                    10000000000000000000000000000 * x**2 +
                    71841388839807267676152024786000000000000000 * x +
                    129029628760809605749020969023932901278290735413660734705971
                )

                h = (
                    -1743436700916730000000000000000000000000000 * x**2 * y -
                    12525091394814956778444367128798089188206978000000000000000
                    * x * y -
                    244093590929967254073813518342605644787785800 * x -
                    22495499028725631994927113634418779135935898997901327211111875586270479483
                    * y -
                    876801128965234839118530545935732755107147297241756982389990
                )

                assert f.cofactors(g) == (g, h, 1)

    R, x, y = ring('x y', QQ)

    for test in (True, False):
        with using(use_heu_gcd=test, fallback_gcd_zz_method='prs'):
            f, g = x**2 / 2 + x + QQ(1, 2), x / 2 + QQ(1, 2)

            assert f.cofactors(g) == (x + 1, g, QQ(1, 2))
            assert g.cofactors(f) == (x + 1, QQ(1, 2), g)

            assert f.gcd(g) == x + 1
            with using(fallback_gcd_zz_method='modgcd'):
                assert f.gcd(g) == x + 1

            assert R(0).cofactors(R(0)) == (0, 0, 0)
            assert R(0).cofactors(g) == (x + 1, 0, QQ(1, 2))

            f, g = x**2 / 4 + x * y + y**2, x**2 / 2 + x * y

            assert f.cofactors(g) == (x + 2 * y, x / 4 + y / 2, x / 2)

            f, g = x**2 / 2 + x * y + y**2 / 2, x**2 + x * y

            assert f.cofactors(g) == (x + y, x / 2 + y / 2, x)

    R, x, y = ring('x y', QQ.algebraic_field(sqrt(2)))

    for method in ('modgcd', 'prs'):
        with using(gcd_aa_method=method):
            f, g = (x + sqrt(2) * y)**2, x + sqrt(2) * y

            assert f.cofactors(g) == (g, g, 1)

            f, g = x + sqrt(2) * y, x + y

            assert f.cofactors(g) == (1, f, g)

            f, g = x * y + sqrt(2) * y**2, sqrt(2) * y

            assert f.cofactors(g) == (y, x + sqrt(2) * y, sqrt(2))

            f, g = x**2 + 2 * sqrt(2) * x * y + 2 * y**2, x + sqrt(2) * y

            assert f.cofactors(g) == (g, g, 1)

    R, x, y = ring('x y', RR)

    for test in (True, False):
        with using(use_heu_gcd=test, fallback_gcd_zz_method='prs'):
            f, g = 2.1 * x * y**2 - 2.2 * x * y + 2.1 * x, 1.0 * x**3
            h = 1.0 * x

            assert f.cofactors(g) == (h, 2.1 * y**2 - 2.2 * y + 2.1,
                                      1.0 * x**2)

            f, g = 2.1 * x * y**2 - 2.1 * x * y + 2.1 * x, 2.1 * x**3

            assert f.cofactors(g) == (h, f // h, g // h)
            assert g.cofactors(f) == (h, g // h, f // h)

    R, x, y = ring('x y', CC)

    f, g = x**2 - y, x**3 - y * x + 2

    assert f.cofactors(g) == (1, f, g)

    R, x, y, z = ring('x y z', ZZ)

    for test in (True, False):
        for method in ('prs', 'modgcd'):
            with using(use_heu_gcd=test, fallback_gcd_zz_method=method):
                f, g = x - y * z, x - y * z

                assert f.cofactors(g) == (x - y * z, 1, 1)

                f, g, h = R.fateman_poly_F_1()
                H, cff, cfg = f.cofactors(g)

                assert H == h and H * cff == f and H * cfg == g

                f, g, h = R.fateman_poly_F_2()
                H, cff, cfg = f.cofactors(g)

                assert H == h and H * cff == f and H * cfg == g

                f, g, h = R.fateman_poly_F_3()
                H, cff, cfg = f.cofactors(g)

                assert H == h and H * cff == f and H * cfg == g

    R, x, y, z = ring('x y z', QQ.algebraic_field(sqrt(2), sqrt(3)))

    with using(gcd_aa_method='modgcd'):
        h = x**2 * y**7 + sqrt(6) / 21 * z
        f, g = h * (27 * y**3 + 1), h * (y + x)

        assert f.cofactors(g) == (h, 27 * y**3 + 1, x + y)

        h = x**13 * y**3 + x**10 / 2 + 1 / sqrt(2)
        f, g = h * (x + 1), h * sqrt(2) / sqrt(3)

        assert f.cofactors(g) == (h, x + 1, sqrt(2) / sqrt(3))

        h = x**4 * y**9 + sqrt(6) / 22 * z
        f, g = h * (21 * y**3 + 1), h * (y + x)

        assert f.cofactors(g) == (x**4 * y**9 + sqrt(6) / 22 * z,
                                  21 * y**3 + 1, x + y)

        h = x**4 * y**3 + sqrt(6) / 22 * z
        f, g = h * (11 * y**3 + 1), h * (y + x)

        assert f.cofactors(g) == (x**4 * y**3 + sqrt(6) / 22 * z,
                                  11 * y**3 + 1, x + y)

        h = x**2 * y**3 + 1111 * sqrt(6) / 12 * z
        a, b = 11 * y**3 + 2, (y + x - 1) * h

        assert (h * a).cofactors(h * b) == (h, a, b)

        a, b = 12 * y + 2 * x - 1, (y + x - 1) * h

        assert (h * a).cofactors(h * b) == (h, a, b)

    R, x, y, z = ring('x y z', QQ.algebraic_field(I))

    for method in ('prs', 'modgcd'):
        with using(gcd_aa_method=method):
            f, g = R.one, I * z

            assert f.cofactors(g) == (1, f, g)
            assert g.cofactors(f) == (1, g, f)

    R, x, y, z, u = ring('x y z u', ZZ)

    for test in (True, False):
        for method in ('prs', 'modgcd'):
            with using(use_heu_gcd=test, fallback_gcd_zz_method=method):
                f, g = u**2 + 2 * u + 1, 2 * u + 2

                assert f.cofactors(g) == (u + 1, u + 1, 2)

                f, g = z**2 * u**2 + 2 * z**2 * u + z**2 + z * u + z, u**2 + 2 * u + 1
                h, cff, cfg = u + 1, z**2 * u + z**2 + z, u + 1

                assert f.cofactors(g) == (h, cff, cfg)
                assert g.cofactors(f) == (h, cfg, cff)

                f, g = x + y + z, -x - y - z - u

                assert f.cofactors(g) == (1, f, g)

                f, g, h = R.fateman_poly_F_3()
                H, cff, cfg = f.cofactors(g)

                assert H == h and H * cff == f and H * cfg == g

                f, g, h = (1199999999999991 * x**17 - y,
                           2 * y - 19989798798 + x**211,
                           12 * x * y**7 + x**4 - 1)

                for _ in range(10):
                    assert (f * h).cofactors(g * h) == (h, f, g)

    R, x, y, z, u, _ = ring('x y z u v', ZZ)

    for test in (True, False):
        with using(use_heu_gcd=test, fallback_gcd_zz_method='modgcd'):
            f, g, h = R.fateman_poly_F_1()
            H, cff, cfg = f.cofactors(g)

            assert H == h and H * cff == f and H * cfg == g

            f, g, h = R.fateman_poly_F_3()
            H, cff, cfg = f.cofactors(g)

            assert H == h and H * cff == f and H * cfg == g

    R, x, y, z, u, _, a, b = ring('x y z u v a b', ZZ)

    for test in (True, False):
        with using(use_heu_gcd=test, fallback_gcd_zz_method='modgcd'):
            f, g, h = R.fateman_poly_F_1()
            H, cff, cfg = f.cofactors(g)

            assert H == h and H * cff == f and H * cfg == g

    R, x, y, z, u, _, a, b, *_ = ring('x y z u v a b c d', ZZ)

    for test in (True, False):
        with using(use_heu_gcd=test, fallback_gcd_zz_method='modgcd'):
            f, g, h = R.fateman_poly_F_1()
            H, cff, cfg = f.cofactors(g)

            assert H == h and H * cff == f and H * cfg == g

    F, x = field('x', QQ)
    R, _ = ring('t', F)

    assert R(x).gcd(R(0)) == 1
Esempio n. 9
0
def test_PolyElement_subresultants():
    R, x = ring('x', ZZ)

    for check in (True, False):
        with using(use_collins_resultant=check):
            assert R(0).resultant(R(0)) == 0
            assert R(0).resultant(R(0), includePRS=True) == (0, [])
            assert R(1).resultant(R(0)) == 0
            assert R(1).subresultants(R(0)) == [1]
            assert R(0).resultant(R(1)) == 0
            assert R(0).resultant(R(1), includePRS=True) == (0, [1])

            f = x**8 + x**6 - 3 * x**4 - 3 * x**3 + 8 * x**2 + 2 * x - 5
            g = 3 * x**6 + 5 * x**4 - 4 * x**2 - 9 * x + 21

            a = 15 * x**4 - 3 * x**2 + 9
            b = 65 * x**2 + 125 * x - 245
            c = 9326 * x - 12300
            d = R(260708)

            assert f.subresultants(g) == [f, g, a, b, c, d]
            assert f.resultant(g) == d.drop(x)

            f = x**2 - 2 * x + 1
            g = x**2 - 1

            a = 2 * x - 2

            assert f.subresultants(g) == [f, g, a]
            assert f.resultant(g) == 0

            f = x**2 + 1
            g = x**2 - 1

            a = -2

            assert f.subresultants(g) == [f, g, a]
            assert f.resultant(g) == 4
            assert f.resultant(g,
                               includePRS=True) == (4,
                                                    [x**2 + 1, x**2 - 1, -2])

            f = x**2 - 1
            g = x**3 - x**2 + 2

            assert f.resultant(g) == 0

            f = 3 * x**3 - x
            g = 5 * x**2 + 1

            assert f.resultant(g) == 64

            f = x**2 - 2 * x + 7
            g = x**3 - x + 5

            assert f.resultant(g) == 265

            f = x**3 - 6 * x**2 + 11 * x - 6
            g = x**3 - 15 * x**2 + 74 * x - 120

            assert f.resultant(g) == -8640

            f = x**3 - 6 * x**2 + 11 * x - 6
            g = x**3 - 10 * x**2 + 29 * x - 20

            assert f.resultant(g) == 0

            f = x**3 - 1
            g = x**3 + 2 * x**2 + 2 * x - 1

            assert f.resultant(g) == 16

            f = x**8 - 2
            g = x - 1

            assert f.resultant(g) == -1

            # issue sympy/sympy#10666
            f = x**3 - 7 * x + 7
            g = x

            assert f.resultant(g) == -g.resultant(f) == -7

    Rt, t = ring('t', ZZ)
    _, x = ring('x', Rt)

    f = x**6 - 5 * x**4 + 5 * x**2 + 4
    g = -6 * t * x**5 + x**4 + 20 * t * x**3 - 3 * x**2 - 10 * t * x + 6

    assert f.resultant(
        g) == 2930944 * t**6 + 2198208 * t**4 + 549552 * t**2 + 45796
    assert (x - 1).resultant(x + 1, includePRS=True) == (2, [x - 1, x + 1, 2])

    R, x, y = ring('x y', ZZ)

    for check in (True, False):
        with using(use_collins_resultant=check):
            assert R(0).resultant(R(0)) == 0
            assert R(0).resultant(R(0), includePRS=True) == (0, [])

            assert R(0).resultant(R(1)) == 0
            assert R(1).resultant(R(0)) == 0
            assert R(1).subresultants(R(0)) == [1]
            assert R(0).resultant(R(1), includePRS=True) == (0, [1])

            f = x + y + 2
            g = 2 * x * y + x + 3

            assert f.resultant(g) == (-2 * y**2 - 5 * y + 1).drop(x)

            f = 3 * x**2 * y - y**3 - 4
            g = x**2 + x * y**3 - 9

            a = 3 * x * y**4 + y**3 - 27 * y + 4
            b = (-3 * y**10 - 12 * y**7 + y**6 - 54 * y**4 + 8 * y**3 +
                 729 * y**2 - 216 * y + 16)

            r = b.drop(x)
            rr = (r, [
                3 * x**2 * y - y**3 - 4, x**2 + x * y**3 - 9,
                3 * x * y**4 + y**3 - 27 * y + 4, -3 * y**10 - 12 * y**7 +
                y**6 - 54 * y**4 + 8 * y**3 + 729 * y**2 - 216 * y + 16
            ])

            assert f.subresultants(g) == [f, g, a, b]

            assert f.resultant(g) == r
            assert f.resultant(g, includePRS=True) == rr

            f = -x**3 + 5
            g = 3 * x**2 * y + x**2

            a = 45 * y**2 + 30 * y + 5
            b = 675 * y**3 + 675 * y**2 + 225 * y + 25

            r = b.drop(x)

            assert f.subresultants(g) == [f, g, a]
            assert f.resultant(g) == r
            assert f.resultant(g, includePRS=True)[0] == r

            f = x + y
            g = x**2 - x * y + 1

            assert f.resultant(g) == (1 + 2 * y**2).drop(x)

            g += 1

            assert f.resultant(g) == (2 + 2 * y**2).drop(x)

    R, x, y = ring('x y', QQ)

    for check in (True, False):
        with using(use_collins_resultant=check):
            assert R(0).resultant(R(0)) == 0
            assert R(0).resultant(R(1)) == 0

            f = x + y
            g = x**2 - x * y + 1

            assert f.resultant(g) == (1 + 2 * y**2).drop(x)

            f = x / 2 + y + QQ(2, 3)
            g = 2 * x * y + x + 3

            assert f.resultant(g) == (-2 * y**2 - 7 * y / 3 + QQ(5, 6)).drop(x)

            f = 3 * x**2 * y - y**3 - 4
            g = x**2 + x * y**3 - 9

            assert f.resultant(g) == (-3 * y**10 - 12 * y**7 + y**6 -
                                      54 * y**4 + 8 * y**3 + 729 * y**2 -
                                      216 * y + 16).drop(x)

            f = -x**3 + 5
            g = 3 * x**2 * y + x**2

            assert f.resultant(g) == (675 * y**3 + 675 * y**2 + 225 * y +
                                      25).drop(x)

    R, x, y, z, u, v = ring('x y z u v', ZZ)

    for check in (True, False):
        with using(use_collins_resultant=check):
            f = 6 * x**2 - 3 * x * y - 2 * x * z + y * z
            g = x**2 - x * u - x * v + u * v

            r = (y**2 * z**2 - 3 * y**2 * z * u - 3 * y**2 * z * v +
                 9 * y**2 * u * v - 2 * y * z**2 * u - 2 * y * z**2 * v +
                 6 * y * z * u**2 + 12 * y * z * u * v + 6 * y * z * v**2 -
                 18 * y * u**2 * v - 18 * y * u * v**2 + 4 * z**2 * u * v -
                 12 * z * u**2 * v - 12 * z * u * v**2 + 36 * u**2 * v**2)

            assert f.resultant(g) == r.drop(x)

    R, x, y, z, u, v = ring('x y z u v', QQ)

    for check in (True, False):
        with using(use_collins_resultant=check):
            f = x**2 - x * y / 2 - x * z / 3 + y * z / 6
            g = x**2 - x * u - x * v + u * v

            r = (y**2 * z**2 / 36 - y**2 * z * u / 12 - y**2 * z * v / 12 +
                 y**2 * u * v / 4 - y * z**2 * u / 18 - y * z**2 * v / 18 +
                 y * z * u**2 / 6 + y * z * u * v / 3 + y * z * v**2 / 6 -
                 y * u**2 * v / 2 - y * u * v**2 / 2 + z**2 * u * v / 9 -
                 z * u**2 * v / 3 - z * u * v**2 / 3 + u**2 * v**2)

            assert f.resultant(g) == r.drop(x)
Esempio n. 10
0
def test_PolyElement_is_irreducible():
    R, x = ring('x', FF(5))

    f = (x**10 + 4 * x**9 + 2 * x**8 + 2 * x**7 + 3 * x**6 + 2 * x**5 +
         4 * x**4 + x**3 + 4 * x**2 + 4)
    g = 3 * x**2 + 2 * x + 4

    for method in ('ben-or', 'rabin'):
        with using(gf_irred_method=method):
            assert f.is_irreducible is True
            assert g.is_irreducible is False

    R, x = ring('x', FF(11))

    f = R(7)
    g = 7 * x + 3
    h = 7 * x**2 + 3 * x + 1

    for method in ('ben-or', 'rabin'):
        with using(gf_irred_method=method):
            assert f.is_irreducible is True
            assert g.is_irreducible is True
            assert h.is_irreducible is False

    with using(gf_irred_method='other'):
        pytest.raises(KeyError, lambda: f.is_irreducible)

    R, x = ring('x', FF(13))

    f = 2 * x**4 + 3 * x**3 + 4 * x**2 + 5 * x + 6
    g = 2 * x**4 + 3 * x**3 + 4 * x**2 + 5 * x + 8

    with using(gf_irred_method='ben-or'):
        assert f.is_irreducible is False
        assert g.is_irreducible is True

    R, x = ring('x', FF(17))

    f = (x**10 + 9 * x**9 + 9 * x**8 + 13 * x**7 + 16 * x**6 + 15 * x**5 +
         6 * x**4 + 7 * x**3 + 7 * x**2 + 7 * x + 10)
    g = (x**10 + 7 * x**9 + 16 * x**8 + 7 * x**7 + 15 * x**6 + 13 * x**5 +
         13 * x**4 + 11 * x**3 + 16 * x**2 + 10 * x + 9)
    h = f * g

    for method in ('ben-or', 'rabin'):
        with using(gf_irred_method=method):
            assert f.is_irreducible is True
            assert g.is_irreducible is True
            assert h.is_irreducible is False

    F9 = FF(3, [2, 2, 1])
    R, x = ring('x', F9)

    f = x**3 + F9(8) * x**2 + F9(8) * x + F9(4)

    for method in ('ben-or', 'rabin'):
        with using(gf_irred_method=method):
            assert f.is_irreducible is False

    F27 = FF(3, [1, 0, 2, 1])
    R, x = ring('x', F27)

    f = x**3 + F27(8) * x**2 + F27(19) * x + F27(24)

    for method in ('ben-or', 'rabin'):
        with using(gf_irred_method=method):
            assert f.is_irreducible is True

    R, x = ring('x', ZZ)

    assert x.is_irreducible is True
    assert (x**2 + x + 1).is_irreducible is True
    assert (x**2 + 2 * x + 1).is_irreducible is False
    assert (x**2 - 1).is_irreducible is False

    f = 3 * x**4 + 2 * x**3 + 6 * x**2 + 8 * x

    assert (f + 7).is_irreducible is True
    assert (f + 4).is_irreducible is True
    assert (f + 10).is_irreducible is True
    assert (f + 14).is_irreducible is True

    R, x, y = ring('x y', ZZ)

    assert R(2).is_irreducible is True
    assert (x**2 + x + 1).is_irreducible is True
    assert (x**2 + 2 * x + 1).is_irreducible is False
    assert ((x - 2 * y) * (x + y)).is_irreducible is False
    assert (x**2 + y**2).is_irreducible is True

    R, x, y, _ = ring('x y z', QQ)

    assert (x**2 + x + 1).is_irreducible
    assert (x**2 + 2 * x + 1).is_irreducible is False
Esempio n. 11
0
def test_gf_factor():
    R, x = ring('x', FF(2))

    f = x**4 + x
    g = (1, [(x, 1), (x + 1, 1), (x**2 + x + 1, 1)])

    for method in ('berlekamp', 'zassenhaus', 'shoup'):
        with using(gf_factor_method=method):
            assert f.factor_list() == g

    f = x**18 + x**17 + x**16 + x**14 + x**12 + x**11 + x**8 + x**5 + x**3 + 1
    g = (1, [(x + 1, 4), (x**4 + x**3 + 1, 1),
             (x**10 + x**8 + x**7 + x**5 + 1, 1)])

    for method in ('berlekamp', 'zassenhaus', 'shoup'):
        with using(gf_factor_method=method):
            assert f.factor_list() == g

    f = x**63 + 1
    g = (1, [(x + 1, 1), (x**2 + x + 1, 1),
             (x**3 + x + 1, 1), (x**6 + x + 1, 1), (x**3 + x**2 + 1, 1),
             (x**6 + x**3 + 1, 1), (x**6 + x**5 + 1, 1),
             (x**6 + x**4 + x**2 + x + 1, 1), (x**6 + x**5 + x**2 + x + 1, 1),
             (x**6 + x**4 + x**3 + x + 1, 1), (x**6 + x**5 + x**4 + x + 1, 1),
             (x**6 + x**5 + x**3 + x**2 + 1, 1),
             (x**6 + x**5 + x**4 + x**2 + 1, 1)])

    for method in ('zassenhaus', 'shoup'):
        with using(gf_factor_method=method):
            assert f.factor_list() == g

    f = (x**28 + x**27 + x**26 + x**25 + x**24 + x**20 + x**19 + x**17 +
         x**16 + x**15 + x**14 + x**13 + x**12 + x**11 + x**9 + x**8 + x**5 +
         x**4 + x**2 + x)
    g = (1, [(x, 1), (x + 1, 2), (x**5 + x**4 + x**3 + x + 1, 1),
             (x**10 + x**9 + x**8 + x**7 + 1, 1),
             (x**10 + x**9 + x**8 + x**5 + x**4 + x**2 + 1, 1)])

    for method in ('zassenhaus', 'shoup'):
        with using(gf_factor_method=method):
            assert f.factor_list() == g

    R, x = ring('x', FF(3))

    f = x**6 - x**5 + x**4 + x**3 - x
    g = (1, [(x, 1), (x + 1, 1), (x**2 + 1, 1), (x**2 + x + 2, 1)])

    for method in ('zassenhaus', 'shoup'):
        with using(gf_factor_method=method):
            assert f.factor_list() == g

    f = x**4 + x**3 + x + 2
    g = (1, [(x**2 + 1, 1), (x**2 + x + 2, 1)])

    for method in ('zassenhaus', 'shoup'):
        with using(gf_factor_method=method):
            assert f.factor_list() == g

    R, x = ring('x', FF(11))

    for method in ('berlekamp', 'zassenhaus', 'shoup'):
        with using(gf_factor_method=method):
            assert R(0).factor_list() == (0, [])
            assert R(1).factor_list() == (1, [])
            assert x.factor_list() == (1, [(x, 1)])
            assert (x + 1).factor_list() == (1, [(x + 1, 1)])
            assert (2 * x + 3).factor_list() == (2, [(x + 7, 1)])

    assert (5 * x**3 + 2 * x**2 + 7 * x + 2).factor_list() == (5, [(x + 2, 1),
                                                                   (x + 8, 2)])

    f = x**6 + 8 * x**5 + x**4 + 8 * x**3 + 10 * x**2 + 8 * x + 1
    g = (1, [(x + 1, 1), (x**2 + 5 * x + 3, 1),
             (x**3 + 2 * x**2 + 3 * x + 4, 1)])

    for method in ('berlekamp', 'zassenhaus', 'shoup'):
        with using(gf_factor_method=method):
            assert f.factor_list() == g

    f = x**3 + 5 * x**2 + 8 * x + 4
    g = (1, [(x + 1, 1), (x + 2, 2)])

    for method in ('berlekamp', 'zassenhaus', 'shoup'):
        with using(gf_factor_method=method):
            assert f.factor_list() == g

    f = x**9 + x**8 + 10 * x**7 + x**6 + 10 * x**4 + 10 * x**3 + 10 * x**2
    g = (1, [(x, 2), (x**2 + 9 * x + 5, 1),
             (x**5 + 3 * x**4 + 8 * x**2 + 5 * x + 2, 1)])

    for method in ('berlekamp', 'zassenhaus', 'shoup'):
        with using(gf_factor_method=method):
            assert f.factor_list() == g

    f = x**32 + 1
    g = (1, [(x**16 + 3 * x**8 + 10, 1), (x**16 + 8 * x**8 + 10, 1)])

    for method in ('berlekamp', 'zassenhaus', 'shoup'):
        with using(gf_factor_method=method):
            assert f.factor_list() == g

    f = 8 * x**32 + 5
    g = (8, [(x + 3, 1), (x + 8, 1), (x**2 + 9, 1), (x**2 + 2 * x + 2, 1),
             (x**2 + 9 * x + 2, 1), (x**8 + x**4 + 6, 1),
             (x**8 + 10 * x**4 + 6, 1), (x**4 + 5 * x**2 + 7, 1),
             (x**4 + 6 * x**2 + 7, 1)])

    for method in ('berlekamp', 'zassenhaus', 'shoup'):
        with using(gf_factor_method=method):
            assert f.factor_list() == g

    f = 8 * x**63 + 5
    g = (8,
         [(x + 7, 1), (x**6 + 9 * x**3 + 4, 1), (x**2 + 4 * x + 5, 1),
          (x**3 + 6 * x**2 + 8 * x + 2, 1), (x**3 + 9 * x**2 + 9 * x + 2, 1),
          (x**6 + 2 * x**5 + 6 * x**4 + 8 * x**2 + 4 * x + 4, 1),
          (x**6 + 2 * x**5 + 8 * x**3 + 4 * x**2 + 6 * x + 4, 1),
          (x**6 + 5 * x**5 + 6 * x**4 + 8 * x**2 + 6 * x + 4, 1),
          (x**6 + 2 * x**5 + 3 * x**4 + 8 * x**3 + 6 * x + 4, 1),
          (x**6 + 10 * x**5 + 4 * x**4 + 7 * x**3 + 10 * x**2 + 7 * x + 4, 1),
          (x**6 + 3 * x**5 + 3 * x**4 + x**3 + 6 * x**2 + 8 * x + 4, 1),
          (x**6 + 6 * x**5 + 2 * x**4 + 7 * x**3 + 9 * x**2 + 8 * x + 4, 1),
          (x**6 + 10 * x**5 + 10 * x**4 + x**3 + 4 * x**2 + 9 * x + 4, 1)])

    for method in ('berlekamp', 'zassenhaus', 'shoup'):
        with using(gf_factor_method=method):
            assert f.factor_list() == g

    f = x**15 - 1
    g = (1, [(x + 2, 1), (x + 6, 1), (x + 7, 1), (x + 8, 1), (x + 10, 1),
             (x**2 + x + 1, 1), (x**2 + 5 * x + 3, 1), (x**2 + 9 * x + 4, 1),
             (x**2 + 4 * x + 5, 1), (x**2 + 3 * x + 9, 1)])

    for method in ('zassenhaus', 'shoup'):
        with using(gf_factor_method=method):
            assert f.factor_list() == g

    with using(gf_factor_method='other'):
        pytest.raises(KeyError, (x + 1).factor_list)

    R, x = ring('x', FF(13))

    f = x**8 + x**6 + 10 * x**4 + 10 * x**3 + 8 * x**2 + 2 * x + 8
    g = (1, [(x + 3, 1), (x**3 + 8 * x**2 + 4 * x + 12, 1),
             (x**4 + 2 * x**3 + 3 * x**2 + 4 * x + 6, 1)])

    with using(gf_factor_method='berlekamp'):
        assert f.factor_list() == g

    R, x = ring('x', FF(809))

    f = (x**10 + 2 * x**9 + 5 * x**8 + 26 * x**7 + 677 * x**6 + 436 * x**5 +
         791 * x**4 + 325 * x**3 + 456 * x**2 + 24 * x + 577)
    g = (1, [(x + 701, 1),
             (x**9 + 110 * x**8 + 559 * x**7 + 532 * x**6 + 694 * x**5 +
              151 * x**4 + 110 * x**3 + 70 * x**2 + 735 * x + 122, 1)])

    for method in ('zassenhaus', 'shoup'):
        with using(gf_factor_method=method):
            assert f.factor_list() == g

    # Gathen polynomials: x**n + x + 1 (mod p > 2**n * pi)

    R, x = ring('x', FF(nextprime(2**15 * pi)))

    f = x**15 + x + 1
    g = (1, [
        (x**2 + 22730 * x + 68144, 1),
        (x**4 + 81553 * x**3 + 77449 * x**2 + 86810 * x + 4724, 1),
        (x**4 + 86276 * x**3 + 56779 * x**2 + 14859 * x + 31575, 1),
        (x**5 + 15347 * x**4 + 95022 * x**3 + 84569 * x**2 + 94508 * x + 92335,
         1)
    ])

    for method in ('zassenhaus', 'shoup'):
        with using(gf_factor_method=method):
            assert f.factor_list() == g

    # Shoup polynomials: f = a_0 x**n + a_1 x**(n-1) + ... + a_n
    # (mod p > 2**(n-2) * pi), where a_n = a_{n-1}**2 + 1, a_0 = 1

    R, x = ring('x', FF(nextprime(2**4 * pi)))

    f = x**6 + 2 * x**5 + 5 * x**4 + 26 * x**3 + 41 * x**2 + 39 * x + 38
    g = (1, [(x**2 + 44 * x + 26, 1),
             (x**4 + 11 * x**3 + 25 * x**2 + 18 * x + 30, 1)])

    for method in ('zassenhaus', 'shoup'):
        with using(gf_factor_method=method):
            assert f.factor_list() == g

    F4 = FF(2, [1, 1, 1])
    R, x = ring('x', F4)

    f = x**3 + F4(3) * x + F4(2)
    g = (1, [(x + 1, 1), (x**2 + x + F4(2), 1)])

    for method in ('berlekamp', 'zassenhaus', 'shoup'):
        with using(gf_factor_method=method):
            assert f.factor_list() == g

    F8 = FF(2, [1, 1, 0, 1])
    R, x = ring('x', F8)

    f = x**10 + x**9 + F8(2) * x**8 + F8(2) * x**7 + F8(5) * x**6 + F8(
        3) * x**5
    g = (1, [(x, 5), (x + F8(3), 1), (x + F8(6), 1),
             (x**3 + F8(4) * x**2 + x + F8(3), 1)])

    for method in ('berlekamp', 'zassenhaus', 'shoup'):
        with using(gf_factor_method=method):
            assert f.factor_list() == g

    f = x**4 + F8(5) * x**2 + 1
    g = (1, [(x + F8(4), 2), (x + F8(7), 2)])

    for method in ('berlekamp', 'zassenhaus', 'shoup'):
        with using(gf_factor_method=method):
            assert f.factor_list() == g

    F9 = FF(3, [2, 2, 1])
    R, x = ring('x', F9)

    f = x**5 + F9(2) * x**4 + F9(6) * x**3 + F9(8) * x**2 + F9(5) * x + F9(4)
    g = (1, [(x + F9(8), 1), (x**2 + 2 * x + F9(4), 1),
             (x**2 + F9(4) * x + F9(4), 1)])

    for method in ('berlekamp', 'zassenhaus', 'shoup'):
        with using(gf_factor_method=method):
            assert f.factor_list() == g
Esempio n. 12
0
def test_factor_list():
    R, x = ring('x', FF(2))

    assert (x**2 + 1).factor_list() == (1, [(x + 1, 2)])

    R, x = ring('x', ZZ)

    assert R(0).factor_list() == (0, [])
    assert R(7).factor_list() == (7, [])

    assert (x**2 + 2 * x + 1).factor_list() == (1, [(x + 1, 2)])

    # issue sympy/sympy#8037
    assert (6 * x**2 - 5 * x - 6).factor_list() == (1, [(2 * x - 3, 1),
                                                        (3 * x + 2, 1)])

    R, x = ring('x', QQ)

    assert R(0).factor_list() == (0, [])
    assert R(QQ(1, 7)).factor_list() == (QQ(1, 7), [])

    assert (x**2 / 2 + x + QQ(1, 2)).factor_list() == (QQ(1, 2), [(x + 1, 2)])

    R, x = ring('x', QQ.algebraic_field(I))

    f = x**4 + 2 * x**2

    assert f.factor_list() == (1, [(x, 2), (x**2 + 2, 1)])

    R, x = ring('x', RR)

    assert (1.0 * x**2 + 2.0 * x + 1.0).factor_list() == (1.0, [(1.0 * x + 1.0,
                                                                 2)])
    assert (2.0 * x**2 + 4.0 * x + 2.0).factor_list() == (2.0, [(1.0 * x + 1.0,
                                                                 2)])

    f = 6.7225336055071 * x**2 - 10.6463972754741 * x - 0.33469524022264

    assert f.factor_list() == (1.0, [(f, 1)])

    # issue diofant/diofant#238
    f = 0.1 * x**2 + 1.1 * x + 1.0

    assert f.factor_list() == (10.0, [(0.1 * x + 0.1, 1), (0.1 * x + 1.0, 1)])

    f = 0.25 + 1.0 * x + 1.0 * x**2

    assert f.factor_list() == (4.0, [(0.25 + 0.5 * x, 2)])

    Rt, t = ring('t', ZZ)
    R, x = ring('x', Rt)

    assert R(0).factor_list() == (0, [])
    assert R(7).factor_list() == (7, [])

    assert (4 * t * x**2 + 4 * t**2 * x).factor_list() == (4 * t, [(x, 1),
                                                                   (x + t, 1)])

    Rt, t = ring('t', QQ)
    R, x = ring('x', Rt)

    assert R(0).factor_list() == (0, [])
    assert R(QQ(1, 7)).factor_list() == (QQ(1, 7), [])

    assert (t * x**2 / 2 + t**2 * x / 2).factor_list() == (t / 2, [(x, 1),
                                                                   (x + t, 1)])

    R, x = ring('x', EX)

    pytest.raises(DomainError, R(EX(sin(1))).factor_list)

    R, x, y = ring('x y', FF(2))

    pytest.raises(NotImplementedError, (x**2 + y**2).factor_list)

    R, x, y = ring('x y', ZZ)

    assert R(0).factor_list() == (0, [])
    assert R(7).factor_list() == (7, [])

    assert (x**2 + 2 * x + 1).factor_list() == (1, [(x + 1, 2)])
    assert (4 * x**2 * y + 4 * x * y**2).factor_list() == (4, [(y, 1), (x, 1),
                                                               (x + y, 1)])

    R, x, y = ring('x y', QQ)

    assert R(0).factor_list() == (0, [])
    assert R(QQ(1, 7)).factor_list() == (QQ(1, 7), [])

    assert (x**2 / 2 + x + QQ(1, 2)).factor_list() == (QQ(1, 2), [(x + 1, 2)])
    assert (x**2 * y / 2 + x * y**2 / 2).factor_list() == (QQ(1,
                                                              2), [(y, 1),
                                                                   (x, 1),
                                                                   (x + y, 1)])

    R, x, y = ring('x y', QQ.algebraic_field(I))

    f, r = x**2 + y**2, (1, [(x - I * y, 1), (x + I * y, 1)])

    for method in ('trager', 'modular'):
        with using(aa_factor_method=method):
            assert f.factor_list() == r

    R, x, y = ring('x y', RR)

    f = 2.0 * x**2 - 8.0 * y**2

    assert f.factor_list() == (2.0, [(1.0 * x - 2.0 * y, 1),
                                     (1.0 * x + 2.0 * y, 1)])

    f = 6.7225336055071 * x**2 * y**2 - 10.6463972754741 * x * y - 0.33469524022264

    assert f.factor_list() == (1.0, [(f, 1)])

    Rt, t = ring('t', ZZ)
    R, x, y = ring('x y', Rt)

    assert R(0).factor_list() == (0, [])
    assert R(7).factor_list() == (7, [])

    assert (4 * t * x**2 + 4 * t**2 * x).factor_list() == (4 * t, [(x, 1),
                                                                   (x + t, 1)])

    Rt, t = ring('t', QQ)
    R, x, y = ring('x y', Rt)

    assert R(0).factor_list() == (0, [])
    assert R(QQ(1, 7)).factor_list() == (QQ(1, 7), [])

    assert (t * x**2 / 2 + t**2 * x / 2).factor_list() == (t / 2, [(x, 1),
                                                                   (x + t, 1)])

    R, x, y = ring('x y', EX)

    pytest.raises(DomainError, lambda: R(EX(sin(1))).factor_list())

    # issue diofant/diofant#238
    R, x, y, z = ring('x y z', RR)

    f = x * y + x * z + 0.1 * y + 0.1 * z

    assert f.factor_list() == (10.0, [(x + 0.1, 1), (0.1 * y + 0.1 * z, 1)])

    f = 0.25 * x**2 + 1.0 * x * y * z + 1.0 * y**2 * z**2

    assert f.factor_list() == (4.0, [(0.25 * x + 0.5 * y * z, 2)])

    R, *X = ring('x:200', ZZ)

    f, g = X[0]**2 + 2 * X[0] + 1, X[0] + 1

    assert f.factor_list() == (1, [(g, 2)])

    f, g = X[-1]**2 + 2 * X[-1] + 1, X[-1] + 1

    assert f.factor_list() == (1, [(g, 2)])
Esempio n. 13
0
def test__zz_wang():
    R, x, y, z = ring('x y z', ZZ)
    UV, _x = ring('x', ZZ)

    p = ZZ(nextprime(R._zz_mignotte_bound(w_1)))

    assert p == 6291469

    t_1, k_1, e_1 = y, 1, ZZ(-14)
    t_2, k_2, e_2 = z, 2, ZZ(3)
    t_3, k_3, e_3 = y + z, 2, ZZ(-11)
    t_4, k_4, e_4 = y - z, 1, ZZ(-17)

    T = [t_1, t_2, t_3, t_4]
    K = [k_1, k_2, k_3, k_4]
    E = [e_1, e_2, e_3, e_4]

    T = list(zip([t.drop(x) for t in T], K))

    A = [ZZ(-14), ZZ(3)]

    S = w_1.eval([(y, A[0]), (z, A[1])])
    cs, s = S.primitive()

    assert cs == 1 and s == S == (1036728 * _x**6 + 915552 * _x**5 +
                                  55748 * _x**4 + 105621 * _x**3 -
                                  17304 * _x**2 - 26841 * _x - 644)

    assert R._zz_wang_non_divisors(E, cs, ZZ(4)) == [7, 3, 11, 17]
    assert s.is_squarefree and s.degree() == w_1.degree()

    _, H = UV._zz_factor_sqf(s)

    h_1 = 187 * _x**2 - 23
    h_2 = 44 * _x**2 + 42 * _x + 1
    h_3 = 126 * _x**2 - 9 * _x + 28

    LC = [lc.drop(x) for lc in [y**2 - z**2, -4 * y - 4 * z, -y * z**2]]
    factors = R._zz_wang_hensel_lifting(w_1, H, LC, A, p)

    assert H == [h_1, h_2, h_3]
    assert R._zz_wang_lead_coeffs(w_1, T, cs, E, H, A) == (w_1, H, LC)
    assert functools.reduce(operator.mul, factors) == w_1

    # coverage tests
    f = x**6 + 5 * x**4 * y - 5 * x**2 * y**2 - y**3

    assert R._zz_wang(f, mod=4,
                      seed=1) == [x**2 - y, x**4 + 6 * x**2 * y + y**2]

    # This tests a bug in the Wang algorithm that occured only with a very
    # specific set of random numbers; issue sympy/sympy#6355.
    random_sequence = [
        -1, -1, 0, 0, 0, 0, -1, -1, 0, -1, 3, -1, 3, 3, 3, 3, -1, 3
    ]

    R, x, y, z = ring('x y z', ZZ)

    f = 2 * x**2 + y * z - y - z**2 + z

    assert R._zz_wang(f, seed=random_sequence) == [f]

    with using(eez_restart_if_needed=False):
        pytest.raises(ExtraneousFactors,
                      lambda: R._zz_wang(f, seed=random_sequence))
Esempio n. 14
0
def test_dup_zz_factor():
    R, x = ring('x', ZZ)

    assert R(0).factor_list() == (0, [])
    assert R(7).factor_list() == (7, [])
    assert R(-7).factor_list() == (-7, [])

    assert R._zz_factor_sqf(R(0)) == (0, [])
    assert R._zz_factor_sqf(R(7)) == (7, [])
    assert R._zz_factor_sqf(R(-7)) == (-7, [])

    assert (2 * x + 4).factor_list() == (2, [(x + 2, 1)])
    assert R._zz_factor_sqf(2 * x + 4) == (2, [x + 2])

    f = x**4 + x + 1

    for _ in range(20):
        assert f.factor_list() == (1, [(f, 1)])

    f = x**5 - x**3 - x**2 + 1

    assert f.factor_list() == (1, [(x + 1, 1), (x - 1, 2), (x**2 + x + 1, 1)])

    for test in (True, False):
        with using(use_irreducible_in_factor=test):
            assert (x**2 + 2 * x + 2).factor_list() == (1, [(x**2 + 2 * x + 2,
                                                             1)])

            assert (18 * x**2 + 12 * x + 2).factor_list() == (2, [(3 * x + 1,
                                                                   2)])

            f = -9 * x**2 + 1

            assert R._zz_factor_sqf(f) == (-1, [3 * x - 1, 3 * x + 1])
            assert f.factor_list() == (-1, [(3 * x - 1, 1), (3 * x + 1, 1)])

            assert R._zz_factor_sqf(3 * x**4 + 2 * x**3 + 6 * x**2 + 8 * x +
                                    10) == (1, [
                                        3 * x**4 + 2 * x**3 + 6 * x**2 +
                                        8 * x + 10
                                    ])

    with using(use_cyclotomic_factor=False):
        assert R._zz_factor_sqf(-9 * x**2 + 1) == (-1, [3 * x - 1, 3 * x + 1])

    assert (x**3 - 6 * x**2 + 11 * x - 6).factor_list() == (1, [(x - 3, 1),
                                                                (x - 2, 1),
                                                                (x - 1, 1)])

    assert R._zz_factor_sqf(x**3 - 6 * x**2 + 11 * x -
                            6) == (1, [x - 3, x - 2, x - 1])

    assert (3 * x**3 + 10 * x**2 + 13 * x + 10).factor_list() == (1, [
        (x + 2, 1), (3 * x**2 + 4 * x + 5, 1)
    ])

    assert R._zz_factor_sqf(3 * x**3 + 10 * x**2 + 13 * x +
                            10) == (1, [x + 2, 3 * x**2 + 4 * x + 5])

    assert (-x**6 + x**2).factor_list() == (-1, [(x, 2), (x - 1, 1),
                                                 (x + 1, 1), (x**2 + 1, 1)])

    f = (1080 * x**8 + 5184 * x**7 + 2099 * x**6 + 744 * x**5 + 2736 * x**4 -
         648 * x**3 + 129 * x**2 - 324)

    assert f.factor_list() == (1, [(216 * x**4 + 31 * x**2 - 27, 1),
                                   (5 * x**4 + 24 * x**3 + 9 * x**2 + 12, 1)])

    f = (-29802322387695312500000000000000000000 * x**25 +
         2980232238769531250000000000000000 * x**20 +
         1743435859680175781250000000000 * x**15 +
         114142894744873046875000000 * x**10 - 210106372833251953125 * x**5 +
         +95367431640625)

    assert (f.factor_list() == (-95367431640625, [
        (5 * x - 1, 1), (100 * x**2 + 10 * x - 1, 2),
        (625 * x**4 + 125 * x**3 + 25 * x**2 + 5 * x + 1, 1),
        (10000 * x**4 - 3000 * x**3 + 400 * x**2 - 20 * x + 1, 2),
        (10000 * x**4 + 2000 * x**3 + 400 * x**2 + 30 * x + 1, 2)
    ]))

    f = x**10 - 1

    for test in (True, False):
        with using(use_cyclotomic_factor=test):
            f = x**10 - 1

            assert f.factor_list() == (1, [(x - 1, 1), (x + 1, 1),
                                           (x**4 - x**3 + x**2 - x + 1, 1),
                                           (x**4 + x**3 + x**2 + x + 1, 1)])

            f = x**10 + 1

            assert f.factor_list() == (1, [(x**2 + 1, 1),
                                           (x**8 - x**6 + x**4 - x**2 + 1, 1)])
Esempio n. 15
0
def test_benchmark_czichowski(method):
    # This is very slow (> 2 minutes on 3.4 GHz) without GMPY

    with using(groebner=method):
        R,  x, t = ring('x t', ZZ, lex)
        I = [9*x**8 + 36*x**7 - 32*x**6 - 252*x**5 - 78*x**4 + 468*x**3 + 288*x**2 - 108*x + 9,
             (-72 - 72*t)*x**7 + (-256 - 252*t)*x**6 + (192 + 192*t)*x**5 + (1280 + 1260*t)*x**4 + (312 + 312*t)*x**3 + (-404*t)*x**2 + (-576 - 576*t)*x + 96 + 108*t]

        assert groebner(I, R) == [
            3725588592068034903797967297424801242396746870413359539263038139343329273586196480000*x -
            160420835591776763325581422211936558925462474417709511019228211783493866564923546661604487873*t**7 -
            1406108495478033395547109582678806497509499966197028487131115097902188374051595011248311352864*t**6 -
            5241326875850889518164640374668786338033653548841427557880599579174438246266263602956254030352*t**5 -
            10758917262823299139373269714910672770004760114329943852726887632013485035262879510837043892416*t**4 -
            13119383576444715672578819534846747735372132018341964647712009275306635391456880068261130581248*t**3 -
            9491412317016197146080450036267011389660653495578680036574753839055748080962214787557853941760*t**2 -
            3767520915562795326943800040277726397326609797172964377014046018280260848046603967211258368000*t -
            632314652371226552085897259159210286886724229880266931574701654721512325555116066073245696000,
            610733380717522355121*t**8 +
            6243748742141230639968*t**7 +
            27761407182086143225024*t**6 +
            70066148869420956398592*t**5 +
            109701225644313784229376*t**4 +
            109009005495588442152960*t**3 +
            67072101084384786432000*t**2 +
            23339979742629593088000*t +
            3513592776846090240000,
        ]

        R,  x, t = ring('x t', ZZ, grlex)
        I = [i.set_ring(R) for i in I]

        assert groebner(I, R) == [
            16996618586000601590732959134095643086442*t**3*x -
            32936701459297092865176560282688198064839*t**3 +
            78592411049800639484139414821529525782364*t**2*x -
            120753953358671750165454009478961405619916*t**2 +
            120988399875140799712152158915653654637280*t*x -
            144576390266626470824138354942076045758736*t +
            60017634054270480831259316163620768960*x**2 +
            61976058033571109604821862786675242894400*x -
            56266268491293858791834120380427754600960,
            576689018321912327136790519059646508441672750656050290242749*t**4 +
            2326673103677477425562248201573604572527893938459296513327336*t**3 +
            110743790416688497407826310048520299245819959064297990236000*t**2*x +
            3308669114229100853338245486174247752683277925010505284338016*t**2 +
            323150205645687941261103426627818874426097912639158572428800*t*x +
            1914335199925152083917206349978534224695445819017286960055680*t +
            861662882561803377986838989464278045397192862768588480000*x**2 +
            235296483281783440197069672204341465480107019878814196672000*x +
            361850798943225141738895123621685122544503614946436727532800,
            -117584925286448670474763406733005510014188341867*t**3 +
            68566565876066068463853874568722190223721653044*t**2*x -
            435970731348366266878180788833437896139920683940*t**2 +
            196297602447033751918195568051376792491869233408*t*x -
            525011527660010557871349062870980202067479780112*t +
            517905853447200553360289634770487684447317120*x**3 +
            569119014870778921949288951688799397569321920*x**2 +
            138877356748142786670127389526667463202210102080*x -
            205109210539096046121625447192779783475018619520,
            -3725142681462373002731339445216700112264527*t**3 +
            583711207282060457652784180668273817487940*t**2*x -
            12381382393074485225164741437227437062814908*t**2 +
            151081054097783125250959636747516827435040*t*x**2 +
            1814103857455163948531448580501928933873280*t*x -
            13353115629395094645843682074271212731433648*t +
            236415091385250007660606958022544983766080*x**2 +
            1390443278862804663728298060085399578417600*x -
            4716885828494075789338754454248931750698880,
        ]
Esempio n. 16
0
def test_groebner(method):
    with using(groebner=method):
        R,  x, y = ring('x y', QQ, lex)
        f = x**2 + 2*x*y**2
        g = x*y + 2*y**3 - 1

        assert not is_groebner([f, g])
        ans = [x, y**3 - QQ(1, 2)]
        assert groebner([f, g], R) == ans
        assert is_groebner(ans)
        assert is_minimal(ans, R)

        assert groebner([x, x**2], R) == [x]
        assert groebner([x**2, x], R) == [x]

        R, x, y = ring('x y', ZZ)
        f = x**2*y + y**6 + 1
        g = x**2 - 2*x*y

        assert not is_groebner([f, g])
        ans = [2*x - y**10 - 4*y**7 - y**4 - 4*y,
               y**12 + 4*y**9 + 2*y**6 + 4*y**3 + 1]
        assert groebner([f, g], R) == ans
        assert is_groebner(ans)
        assert is_minimal(ans, R) is False

        R,  y, x = ring('y x', QQ, lex)
        f = 2*x**2*y + y**2
        g = 2*x**3 + x*y - 1

        assert groebner([f, g], R) == [y, x**3 - QQ(1, 2)]

        R,  x, y, z = ring('x y z', QQ, lex)
        f = x - z**2
        g = y - z**3

        assert groebner([f, g], R) == [f, g]

        R,  x, y = ring('x y', QQ, grlex)
        f = x**3 - 2*x*y
        g = x**2*y + x - 2*y**2

        assert groebner([f, g], R) == [x**2, x*y, -x/2 + y**2]

        R,  x, y, z = ring('x y z', QQ, lex)
        f = -x**2 + y
        g = -x**3 + z

        assert groebner([f, g], R) == [x**2 - y, x*y - z, x*z - y**2, y**3 - z**2]

        R,  x, y, z = ring('x y z', QQ, grlex)
        f = -x**2 + y
        g = -x**3 + z

        assert groebner([f, g], R) == [y**3 - z**2, x**2 - y, x*y - z, x*z - y**2]

        R,  x, y, z = ring('x y z', QQ, lex)
        f = -x**2 + z
        g = -x**3 + y

        assert groebner([f, g], R) == [x**2 - z, x*y - z**2, x*z - y, y**2 - z**3]

        R,  x, y, z = ring('x y z', QQ, grlex)
        f = -x**2 + z
        g = -x**3 + y

        assert groebner([f, g], R) == [-y**2 + z**3, x**2 - z, x*y - z**2, x*z - y]

        R,  x, y, z = ring('x y z', QQ, lex)
        f = x - y**2
        g = -y**3 + z

        assert groebner([f, g], R) == [x - y**2, y**3 - z]

        R,  x, y, z = ring('x y z', QQ, grlex)
        f = x - y**2
        g = -y**3 + z

        assert groebner([f, g], R) == [x**2 - y*z, x*y - z, -x + y**2]

        R,  x, y, z = ring('x y z', QQ, lex)
        f = x - z**2
        g = y - z**3

        assert groebner([f, g], R) == [x - z**2, y - z**3]

        R,  x, y, z = ring('x y z', QQ, grlex)
        f = x - z**2
        g = y - z**3

        assert groebner([f, g], R) == [x**2 - y*z, x*z - y, -x + z**2]

        R,  x, y, z = ring('x y z', QQ, lex)
        f = -y**2 + z
        g = x - y**3

        assert groebner([f, g], R) == [x - y*z, y**2 - z]

        R,  x, y, z = ring('x y z', QQ, grlex)
        f = -y**2 + z
        g = x - y**3

        assert groebner([f, g], R) == [-x**2 + z**3, x*y - z**2, y**2 - z, -x + y*z]

        R,  x, y, z = ring('x y z', QQ, lex)
        f = y - z**2
        g = x - z**3

        assert groebner([f, g], R) == [x - z**3, y - z**2]

        R,  x, y, z = ring('x y z', QQ, grlex)
        f = y - z**2
        g = x - z**3

        assert groebner([f, g], R) == [-x**2 + y**3, x*z - y**2, -x + y*z, -y + z**2]

        R,  x, y, z = ring('x y z', QQ, lex)
        f = 4*x**2*y**2 + 4*x*y + 1
        g = x**2 + y**2 - 1

        assert groebner([f, g], R) == [
            x - 4*y**7 + 8*y**5 - 7*y**3 + 3*y,
            y**8 - 2*y**6 + 3*y**4/2 - y**2/2 + QQ(1, 16),
        ]

        b = [y**2 + x*y + x**2, y + x, y, x**2, x]
        assert is_groebner(b)
        assert not is_minimal(b, R)