Esempio n. 1
0
def _reduce_inequalities(inequalities, symbols):
    # helper for reduce_inequalities

    poly_part, pw_part = {}, {}
    other = []

    for inequality in inequalities:
        if inequality is S.true:
            continue
        elif inequality is S.false:
            return S.false

        expr, rel = inequality.lhs, inequality.rel_op  # rhs is 0

        # check for gens using atoms which is more strict than free_symbols to
        # guard against EX domain which won't be handled by
        # reduce_rational_inequalities
        gens = expr.atoms(Dummy, Symbol)

        if len(gens) == 1:
            gen = gens.pop()
        else:
            common = expr.free_symbols & symbols
            if len(common) == 1:
                gen = common.pop()
                other.append(
                    solve_univariate_inequality(Relational(expr, 0, rel), gen))
                continue
            else:
                raise NotImplementedError(
                    filldedent('''
                    inequality has more than one
                    symbol of interest'''))

        if expr.is_polynomial(gen):
            poly_part.setdefault(gen, []).append((expr, rel))
        else:
            components = expr.find(lambda u: u.has(gen) and (
                u.is_Function or u.is_Pow and not u.exp.is_Integer))
            if components and all(
                    isinstance(i, Abs) or isinstance(i, Piecewise)
                    for i in components):
                pw_part.setdefault(gen, []).append((expr, rel))
            else:
                other.append(
                    solve_univariate_inequality(Relational(expr, 0, rel), gen))

    poly_reduced = []
    pw_reduced = []

    for gen, exprs in poly_part.items():
        poly_reduced.append(reduce_rational_inequalities([exprs], gen))

    for gen, exprs in pw_part.items():
        pw_reduced.append(reduce_piecewise_inequalities(exprs, gen))

    return And(*(poly_reduced + pw_reduced + other))
Esempio n. 2
0
def test_core_relational():
    for c in (Equality, Equality(x, y), GreaterThan, GreaterThan(x,
                                                                 y), LessThan,
              LessThan(x, y), Relational, Relational(x, y), StrictGreaterThan,
              StrictGreaterThan(x, y), StrictLessThan, StrictLessThan(x, y),
              Unequality, Unequality(x, y)):
        check(c)
Esempio n. 3
0
def test_fcode_Relational():
    assert fcode(Relational(x, y, "=="), source_format="free") == "Eq(x, y)"
    assert fcode(Relational(x, y, "!="), source_format="free") == "Ne(x, y)"
    assert fcode(Relational(x, y, ">="), source_format="free") == "x >= y"
    assert fcode(Relational(x, y, "<="), source_format="free") == "x <= y"
    assert fcode(Relational(x, y, ">"), source_format="free") == "x > y"
    assert fcode(Relational(x, y, "<"), source_format="free") == "x < y"
Esempio n. 4
0
 def __new__(cls, lhs, rhs=0, **assumptions):
     from diofant.matrices.expressions.matexpr import (
         MatrixElement, MatrixSymbol)
     from diofant.tensor.indexed import Indexed
     lhs = _sympify(lhs)
     rhs = _sympify(rhs)
     # Tuple of things that can be on the lhs of an assignment
     assignable = (Symbol, MatrixSymbol, MatrixElement, Indexed)
     if not isinstance(lhs, assignable):
         raise TypeError("Cannot assign to lhs of type %s." % type(lhs))
     # Indexed types implement shape, but don't define it until later. This
     # causes issues in assignment validation. For now, matrices are defined
     # as anything with a shape that is not an Indexed
     lhs_is_mat = hasattr(lhs, 'shape') and not isinstance(lhs, Indexed)
     rhs_is_mat = hasattr(rhs, 'shape') and not isinstance(rhs, Indexed)
     # If lhs and rhs have same structure, then this assignment is ok
     if lhs_is_mat:
         if not rhs_is_mat:
             raise ValueError("Cannot assign a scalar to a matrix.")
         elif lhs.shape != rhs.shape:
             raise ValueError("Dimensions of lhs and rhs don't align.")
     elif rhs_is_mat and not lhs_is_mat:
         raise ValueError("Cannot assign a matrix to a scalar.")
     return Relational.__new__(cls, lhs, rhs, **assumptions)
Esempio n. 5
0
def test_wrappers():
    e = x + x**2

    res = Relational(y, e, '==')
    assert Rel(y, x + x**2, '==') == res
    assert Eq(y, x + x**2) == res

    res = Relational(y, e, '<')
    assert Lt(y, x + x**2) == res

    res = Relational(y, e, '<=')
    assert Le(y, x + x**2) == res

    res = Relational(y, e, '>')
    assert Gt(y, x + x**2) == res

    res = Relational(y, e, '>=')
    assert Ge(y, x + x**2) == res

    res = Relational(y, e, '!=')
    assert Ne(y, x + x**2) == res
Esempio n. 6
0
def test_rel_subs():
    e = Relational(x, y, '==')
    e = e.subs(x, z)

    assert isinstance(e, Equality)
    assert e.lhs == z
    assert e.rhs == y

    e = Relational(x, y, '>=')
    e = e.subs(x, z)

    assert isinstance(e, GreaterThan)
    assert e.lhs == z
    assert e.rhs == y

    e = Relational(x, y, '<=')
    e = e.subs(x, z)

    assert isinstance(e, LessThan)
    assert e.lhs == z
    assert e.rhs == y

    e = Relational(x, y, '>')
    e = e.subs(x, z)

    assert isinstance(e, StrictGreaterThan)
    assert e.lhs == z
    assert e.rhs == y

    e = Relational(x, y, '<')
    e = e.subs(x, z)

    assert isinstance(e, StrictLessThan)
    assert e.lhs == z
    assert e.rhs == y

    e = Eq(x, 0)
    assert e.subs(x, 0) is S.true
    assert e.subs(x, 1) is S.false
Esempio n. 7
0
def test_rel_ne():
    assert Relational(x, y, '!=') == Ne(x, y)
Esempio n. 8
0
def test_new_relational():
    assert Eq(x) == Relational(x, 0)  # None ==> Equality
    assert Eq(x) == Relational(x, 0, '==')
    assert Eq(x) == Relational(x, 0, 'eq')
    assert Eq(x) == Equality(x, 0)
    assert Eq(x, -1) == Relational(x, -1)  # None ==> Equality
    assert Eq(x, -1) == Relational(x, -1, '==')
    assert Eq(x, -1) == Relational(x, -1, 'eq')
    assert Eq(x, -1) == Equality(x, -1)
    assert Eq(x) != Relational(x, 1)  # None ==> Equality
    assert Eq(x) != Relational(x, 1, '==')
    assert Eq(x) != Relational(x, 1, 'eq')
    assert Eq(x) != Equality(x, 1)
    assert Eq(x, -1) != Relational(x, 1)  # None ==> Equality
    assert Eq(x, -1) != Relational(x, 1, '==')
    assert Eq(x, -1) != Relational(x, 1, 'eq')
    assert Eq(x, -1) != Equality(x, 1)

    assert Ne(x, 0) == Relational(x, 0, '!=')
    assert Ne(x, 0) == Relational(x, 0, '<>')
    assert Ne(x, 0) == Relational(x, 0, 'ne')
    assert Ne(x, 0) == Unequality(x, 0)
    assert Ne(x, 0) != Relational(x, 1, '!=')
    assert Ne(x, 0) != Relational(x, 1, '<>')
    assert Ne(x, 0) != Relational(x, 1, 'ne')
    assert Ne(x, 0) != Unequality(x, 1)

    assert Ge(x, 0) == Relational(x, 0, '>=')
    assert Ge(x, 0) == Relational(x, 0, 'ge')
    assert Ge(x, 0) == GreaterThan(x, 0)
    assert Ge(x, 1) != Relational(x, 0, '>=')
    assert Ge(x, 1) != Relational(x, 0, 'ge')
    assert Ge(x, 1) != GreaterThan(x, 0)
    assert (x >= 1) == Relational(x, 1, '>=')
    assert (x >= 1) == Relational(x, 1, 'ge')
    assert (x >= 1) == GreaterThan(x, 1)
    assert (x >= 0) != Relational(x, 1, '>=')
    assert (x >= 0) != Relational(x, 1, 'ge')
    assert (x >= 0) != GreaterThan(x, 1)

    assert Le(x, 0) == Relational(x, 0, '<=')
    assert Le(x, 0) == Relational(x, 0, 'le')
    assert Le(x, 0) == LessThan(x, 0)
    assert Le(x, 1) != Relational(x, 0, '<=')
    assert Le(x, 1) != Relational(x, 0, 'le')
    assert Le(x, 1) != LessThan(x, 0)
    assert (x <= 1) == Relational(x, 1, '<=')
    assert (x <= 1) == Relational(x, 1, 'le')
    assert (x <= 1) == LessThan(x, 1)
    assert (x <= 0) != Relational(x, 1, '<=')
    assert (x <= 0) != Relational(x, 1, 'le')
    assert (x <= 0) != LessThan(x, 1)

    assert Gt(x, 0) == Relational(x, 0, '>')
    assert Gt(x, 0) == Relational(x, 0, 'gt')
    assert Gt(x, 0) == StrictGreaterThan(x, 0)
    assert Gt(x, 1) != Relational(x, 0, '>')
    assert Gt(x, 1) != Relational(x, 0, 'gt')
    assert Gt(x, 1) != StrictGreaterThan(x, 0)
    assert (x > 1) == Relational(x, 1, '>')
    assert (x > 1) == Relational(x, 1, 'gt')
    assert (x > 1) == StrictGreaterThan(x, 1)
    assert (x > 0) != Relational(x, 1, '>')
    assert (x > 0) != Relational(x, 1, 'gt')
    assert (x > 0) != StrictGreaterThan(x, 1)

    assert Lt(x, 0) == Relational(x, 0, '<')
    assert Lt(x, 0) == Relational(x, 0, 'lt')
    assert Lt(x, 0) == StrictLessThan(x, 0)
    assert Lt(x, 1) != Relational(x, 0, '<')
    assert Lt(x, 1) != Relational(x, 0, 'lt')
    assert Lt(x, 1) != StrictLessThan(x, 0)
    assert (x < 1) == Relational(x, 1, '<')
    assert (x < 1) == Relational(x, 1, 'lt')
    assert (x < 1) == StrictLessThan(x, 1)
    assert (x < 0) != Relational(x, 1, '<')
    assert (x < 0) != Relational(x, 1, 'lt')
    assert (x < 0) != StrictLessThan(x, 1)

    # finally, some fuzz testing
    for i in range(100):
        while 1:
            strtype, length = (chr, 65535) if random.randint(0, 1) else (chr,
                                                                         255)
            relation_type = strtype(random.randint(0, length))
            if random.randint(0, 1):
                relation_type += strtype(random.randint(0, length))
            if relation_type not in ('==', 'eq', '!=', '<>', 'ne', '>=', 'ge',
                                     '<=', 'le', '>', 'gt', '<', 'lt'):
                break

        pytest.raises(ValueError, lambda: Relational(x, 1, relation_type))
Esempio n. 9
0
def reduce_piecewise_inequality(expr, rel, gen):
    """
    Reduce an inequality with nested piecewise functions.

    Examples
    ========

    >>> from diofant import Abs, Symbol, Piecewise
    >>> from diofant.solvers.inequalities import reduce_piecewise_inequality

    >>> x = Symbol('x', real=True)

    >>> reduce_piecewise_inequality(Abs(x - 5) - 3, '<', x)
    And(2 < x, x < 8)
    >>> reduce_piecewise_inequality(Abs(x + 2)*3 - 13, '<', x)
    And(-19/3 < x, x < 7/3)

    >>> reduce_piecewise_inequality(Piecewise((1, x < 1),
    ...                                       (3, True)) - 1, '>', x)
    1 <= x

    See Also
    ========

    reduce_piecewise_inequalities
    """
    if gen.is_extended_real is False:
        raise TypeError(
            filldedent('''
            can't solve inequalities with piecewise
            functions containing non-real variables'''))

    def _bottom_up_scan(expr):
        exprs = []

        if expr.is_Add or expr.is_Mul:
            op = expr.func

            for arg in expr.args:
                _exprs = _bottom_up_scan(arg)

                if not exprs:
                    exprs = _exprs
                else:
                    args = []

                    for expr, conds in exprs:
                        for _expr, _conds in _exprs:
                            args.append((op(expr, _expr), conds + _conds))

                    exprs = args
        elif expr.is_Pow:
            n = expr.exp

            if not n.is_Integer:
                raise NotImplementedError("only integer powers are supported")

            _exprs = _bottom_up_scan(expr.base)

            for expr, conds in _exprs:
                exprs.append((expr**n, conds))
        elif isinstance(expr, Abs):
            _exprs = _bottom_up_scan(expr.args[0])

            for expr, conds in _exprs:
                exprs.append((expr, conds + [Ge(expr, 0)]))
                exprs.append((-expr, conds + [Lt(expr, 0)]))
        elif isinstance(expr, Piecewise):
            for a in expr.args:
                _exprs = _bottom_up_scan(a.expr)

                for ex, conds in _exprs:
                    if a.cond is not S.true:
                        exprs.append((ex, conds + [a.cond]))
                    else:
                        oconds = [
                            c[1] for c in expr.args if c[1] is not S.true
                        ]
                        exprs.append(
                            (ex, conds + [And(*[~c for c in oconds])]))
        else:
            exprs = [(expr, [])]

        return exprs

    exprs = _bottom_up_scan(expr)

    mapping = {'<': '>', '<=': '>='}
    inequalities = []

    for expr, conds in exprs:
        if rel not in mapping.keys():
            expr = Relational(expr, 0, rel)
        else:
            expr = Relational(-expr, 0, mapping[rel])

        inequalities.append([expr] + conds)

    return reduce_rational_inequalities(inequalities, gen)
Esempio n. 10
0
def reduce_rational_inequalities(exprs, gen, relational=True):
    """
    Reduce a system of rational inequalities with rational coefficients.

    Examples
    ========

    >>> from diofant import Poly, Symbol
    >>> from diofant.solvers.inequalities import reduce_rational_inequalities

    >>> x = Symbol('x', real=True)

    >>> reduce_rational_inequalities([[x**2 <= 0]], x)
    Eq(x, 0)
    >>> reduce_rational_inequalities([[x + 2 > 0]], x)
    -2 < x
    >>> reduce_rational_inequalities([[(x + 2, ">")]], x)
    -2 < x
    >>> reduce_rational_inequalities([[x + 2]], x)
    Eq(x, -2)
    """
    exact = True
    eqs = []
    solution = S.Reals if exprs else S.EmptySet
    for _exprs in exprs:
        _eqs = []

        for expr in _exprs:
            if isinstance(expr, tuple):
                expr, rel = expr
            else:
                if expr.is_Relational:
                    expr, rel = expr.lhs - expr.rhs, expr.rel_op
                else:
                    expr, rel = expr, '=='

            if expr is S.true:
                numer, denom, rel = S.Zero, S.One, '=='
            elif expr is S.false:
                numer, denom, rel = S.One, S.One, '=='
            else:
                numer, denom = expr.together().as_numer_denom()

            try:
                (numer, denom), opt = parallel_poly_from_expr((numer, denom),
                                                              gen)
            except PolynomialError:
                raise PolynomialError(
                    filldedent('''
                    only polynomials and
                    rational functions are supported in this context'''))

            if not opt.domain.is_Exact:
                numer, denom, exact = numer.to_exact(), denom.to_exact(), False

            domain = opt.domain.get_exact()

            if not (domain.is_ZZ or domain.is_QQ):
                expr = numer / denom
                expr = Relational(expr, 0, rel)
                solution &= solve_univariate_inequality(expr,
                                                        gen,
                                                        relational=False)
            else:
                _eqs.append(((numer, denom), rel))

        if _eqs:
            eqs.append(_eqs)

    if eqs:
        solution &= solve_rational_inequalities(eqs)

    if not exact:
        solution = solution.evalf()

    if relational:
        solution = solution.as_relational(gen)

    return solution
Esempio n. 11
0
def solve_poly_inequality(poly, rel):
    """
    Solve a polynomial inequality with rational coefficients.

    Examples
    ========

    >>> from diofant import Poly
    >>> from diofant.solvers.inequalities import solve_poly_inequality
    >>> from diofant.abc import x

    >>> solve_poly_inequality(Poly(x, x, domain='ZZ'), '==')
    [{0}]
    >>> solve_poly_inequality(Poly(x**2 - 1, x, domain='ZZ'), '!=')
    [(-oo, -1), (-1, 1), (1, oo)]
    >>> solve_poly_inequality(Poly(x**2 - 1, x, domain='ZZ'), '==')
    [{-1}, {1}]

    See Also
    ========

    solve_poly_inequalities
    """
    if not isinstance(poly, Poly):
        raise ValueError('`poly` should be a Poly instance')
    if poly.is_number:
        t = Relational(poly.as_expr(), 0, rel)
        if t is S.true:
            return [S.Reals]
        elif t is S.false:
            return [S.EmptySet]
        else:
            raise NotImplementedError("Couldn't determine truth value of %s" %
                                      t)

    reals, intervals = poly.real_roots(multiple=False), []

    if rel == '==':
        for root, _ in reals:
            interval = Interval(root, root)
            intervals.append(interval)
    elif rel == '!=':
        left = S.NegativeInfinity

        for right, _ in reals + [(S.Infinity, 1)]:
            interval = Interval(left, right, True, True)
            intervals.append(interval)
            left = right
    else:
        sign = +1 if poly.LC() > 0 else -1
        eq_sign, equal = None, False

        if rel == '>':
            eq_sign = +1
        elif rel == '<':
            eq_sign = -1
        elif rel == '>=':
            eq_sign, equal = +1, True
        elif rel == '<=':
            eq_sign, equal = -1, True
        else:
            raise ValueError("'%s' is not a valid relation" % rel)

        right, right_open = S.Infinity, True

        for left, multiplicity in reversed(reals):
            if multiplicity % 2:
                if sign == eq_sign:
                    intervals.insert(
                        0, Interval(left, right, not equal, right_open))

                sign, right, right_open = -sign, left, not equal
            else:
                if sign == eq_sign and not equal:
                    intervals.insert(0, Interval(left, right, True,
                                                 right_open))
                    right, right_open = left, True
                elif sign != eq_sign and equal:
                    intervals.insert(0, Interval(left, left))

        if sign == eq_sign:
            intervals.insert(
                0, Interval(S.NegativeInfinity, right, True, right_open))

    return intervals
Esempio n. 12
0
def test_rel_subs():
    e = Relational(x, y, '==')
    e = e.subs({x: z})

    assert isinstance(e, Equality)
    assert e.lhs == z
    assert e.rhs == y

    e = Relational(x, y, '>=')
    e = e.subs({x: z})

    assert isinstance(e, GreaterThan)
    assert e.lhs == z
    assert e.rhs == y

    e = Relational(x, y, '<=')
    e = e.subs({x: z})

    assert isinstance(e, LessThan)
    assert e.lhs == z
    assert e.rhs == y

    e = Relational(x, y, '>')
    e = e.subs({x: z})

    assert isinstance(e, StrictGreaterThan)
    assert e.lhs == z
    assert e.rhs == y

    e = Relational(x, y, '<')
    e = e.subs({x: z})

    assert isinstance(e, StrictLessThan)
    assert e.lhs == z
    assert e.rhs == y

    e = Eq(x, 0)
    assert e.subs({x: 0}) is true
    assert e.subs({x: 1}) is false