Esempio n. 1
0
    def _eval_expand_func(self, **hints):
        from diofant import Sum
        n = self.args[0]
        m = self.args[1] if len(self.args) == 2 else 1

        if m == S.One:
            if n.is_Add:
                off = n.args[0]
                nnew = n - off
                if off.is_Integer and off.is_positive:
                    result = [S.One / (nnew + i)
                              for i in range(off, 0, -1)] + [harmonic(nnew)]
                    return Add(*result)
                elif off.is_Integer and off.is_negative:
                    result = [-S.One / (nnew + i)
                              for i in range(0, off, -1)] + [harmonic(nnew)]
                    return Add(*result)

            if n.is_Rational:
                # Expansions for harmonic numbers at general rational arguments (u + p/q)
                # Split n as u + p/q with p < q
                p, q = n.as_numer_denom()
                u = p // q
                p = p - u * q
                if u.is_nonnegative and p.is_positive and q.is_positive and p < q:
                    k = Dummy("k")
                    t1 = q * Sum(1 / (q * k + p), (k, 0, u))
                    t2 = 2 * Sum(
                        cos((2 * pi * p * k) / q) * log(sin((pi * k) / q)),
                        (k, 1, floor((q - 1) / Integer(2))))
                    t3 = (pi / 2) * cot((pi * p) / q) + log(2 * q)
                    return t1 + t2 - t3

        return self
Esempio n. 2
0
    def _eval_expand_func(self, **hints):
        n, z = self.args

        if n.is_Integer and n.is_nonnegative:
            if z.is_Add:
                coeff = z.args[0]
                if coeff.is_Integer:
                    e = -(n + 1)
                    if coeff > 0:
                        tail = Add(
                            *[Pow(z - i, e) for i in range(1,
                                                           int(coeff) + 1)])
                    else:
                        tail = -Add(
                            *[Pow(z + i, e) for i in range(0, int(-coeff))])
                    return polygamma(n,
                                     z - coeff) + (-1)**n * factorial(n) * tail

            elif z.is_Mul:
                coeff, z = z.as_two_terms()
                if coeff.is_Integer and coeff.is_positive:
                    tail = [
                        polygamma(n, z + Rational(i, coeff))
                        for i in range(0, int(coeff))
                    ]
                    if n == 0:
                        return Add(*tail) / coeff + log(coeff)
                    else:
                        return Add(*tail) / coeff**(n + 1)
                z *= coeff

        return polygamma(n, z)
Esempio n. 3
0
def test_sympyissue_7638():
    f = pi/log(sqrt(2))
    assert ((1 + I)**(I*f/2))**0.3 == (1 + I)**(0.15*I*f)
    # if 1/3 -> 1.0/3 this should fail since it cannot be shown that the
    # sign will be +/-1; for the previous "small arg" case, it didn't matter
    # that this could not be proved
    assert (1 + I)**(4*I*f) == ((1 + I)**(12*I*f))**Rational(1, 3)

    assert (((1 + I)**(I*(1 + 7*f)))**Rational(1, 3)).exp == Rational(1, 3)
    r = symbols('r', extended_real=True)
    assert sqrt(r**2) == abs(r)
    assert cbrt(r**3) != r
    assert sqrt(Pow(2*I, 5*S.Half)) != (2*I)**(5/Integer(4))
    p = symbols('p', positive=True)
    assert cbrt(p**2) == p**(2/Integer(3))
    assert NS(((0.2 + 0.7*I)**(0.7 + 1.0*I))**(0.5 - 0.1*I), 1) == '0.4 + 0.2*I'
    assert sqrt(1/(1 + I)) == sqrt((1 - I)/2)  # or 1/sqrt(1 + I)
    e = 1/(1 - sqrt(2))
    assert sqrt(e) == I/sqrt(-1 + sqrt(2))
    assert e**-S.Half == -I*sqrt(-1 + sqrt(2))
    assert sqrt((cos(1)**2 + sin(1)**2 - 1)**(3 + I)).exp == S.Half
    assert sqrt(r**(4/Integer(3))) != r**(2/Integer(3))
    assert sqrt((p + I)**(4/Integer(3))) == (p + I)**(2/Integer(3))
    assert sqrt((p - p**2*I)**2) == p - p**2*I
    assert sqrt((p + r*I)**2) != p + r*I
    e = (1 + I/5)
    assert sqrt(e**5) == e**(5*S.Half)
    assert sqrt(e**6) == e**3
    assert sqrt((1 + I*r)**6) != (1 + I*r)**3
Esempio n. 4
0
def test_sympyissue_7638():
    f = pi/log(sqrt(2))
    assert ((1 + I)**(I*f/2))**0.3 == (1 + I)**(0.15*I*f)
    # if 1/3 -> 1.0/3 this should fail since it cannot be shown that the
    # sign will be +/-1; for the previous "small arg" case, it didn't matter
    # that this could not be proved
    assert (1 + I)**(4*I*f) == cbrt((1 + I)**(12*I*f))

    assert cbrt((1 + I)**(I*(1 + 7*f))).exp == Rational(1, 3)
    r = symbols('r', extended_real=True)
    assert sqrt(r**2) == abs(r)
    assert cbrt(r**3) != r
    assert sqrt(Pow(2*I, Rational(5, 2))) != (2*I)**Rational(5, 4)
    p = symbols('p', positive=True)
    assert cbrt(p**2) == p**Rational(2, 3)
    assert NS(((0.2 + 0.7*I)**(0.7 + 1.0*I))**(0.5 - 0.1*I), 1) == '0.4 + 0.2*I'
    assert sqrt(1/(1 + I)) == sqrt((1 - I)/2)  # or 1/sqrt(1 + I)
    e = 1/(1 - sqrt(2))
    assert sqrt(e) == I/sqrt(-1 + sqrt(2))
    assert e**Rational(-1, 2) == -I*sqrt(-1 + sqrt(2))
    assert sqrt((cos(1)**2 + sin(1)**2 - 1)**(3 + I)).exp == Rational(1, 2)
    assert sqrt(r**Rational(4, 3)) != r**Rational(2, 3)
    assert sqrt((p + I)**Rational(4, 3)) == (p + I)**Rational(2, 3)
    assert sqrt((p - p**2*I)**2) == p - p**2*I
    assert sqrt((p + r*I)**2) != p + r*I
    e = (1 + I/5)
    assert sqrt(e**5) == e**Rational(5, 2)
    assert sqrt(e**6) == e**3
    assert sqrt((1 + I*r)**6) != (1 + I*r)**3
Esempio n. 5
0
 def _eval_as_leading_term(self, x):
     from diofant import Order
     n, z = [a.as_leading_term(x) for a in self.args]
     o = Order(z, x)
     if n == 0 and o.contains(1 / x):
         return o.getn() * log(x)
     else:
         return self.func(n, z)
Esempio n. 6
0
 def _eval_aseries(self, n, args0, x, logx):
     from diofant import Order
     if args0[0] != oo:
         return super(loggamma, self)._eval_aseries(n, args0, x, logx)
     z = self.args[0]
     m = min(n, ceiling((n + Integer(1)) / 2))
     r = log(z) * (z - Rational(1, 2)) - z + log(2 * pi) / 2
     l = [
         bernoulli(2 * k) / (2 * k * (2 * k - 1) * z**(2 * k - 1))
         for k in range(1, m)
     ]
     o = None
     if m == 0:
         o = Order(1, x)
     else:
         o = Order(1 / z**(2 * m - 1), x)
     # It is very inefficient to first add the order and then do the nseries
     return (r + Add(*l))._eval_nseries(x, n, logx) + o
Esempio n. 7
0
    def eval(cls, z):
        z = sympify(z)

        if z.is_integer:
            if z.is_nonpositive:
                return S.Infinity
            elif z.is_positive:
                return log(gamma(z))
        elif z.is_rational:
            p, q = z.as_numer_denom()
            # Half-integral values:
            if p.is_positive and q == 2:
                return log(
                    sqrt(S.Pi) * 2**(1 - p) * gamma(p) / gamma(
                        (p + 1) * S.Half))

        if z is S.Infinity:
            return S.Infinity
        elif abs(z) is S.Infinity:
            return S.ComplexInfinity
Esempio n. 8
0
 def fdiff(self, argindex=2):
     from diofant import meijerg, unpolarify
     if argindex == 2:
         a, z = self.args
         return -exp(-unpolarify(z)) * z**(a - 1)
     elif argindex == 1:
         a, z = self.args
         return uppergamma(a, z) * log(z) + meijerg([], [1, 1], [0, 0, a],
                                                    [], z)
     else:
         raise ArgumentIndexError(self, argindex)
Esempio n. 9
0
    def _eval_expand_func(self, **hints):
        from diofant import Sum
        z = self.args[0]

        if z.is_Rational:
            p, q = z.as_numer_denom()
            # General rational arguments (u + p/q)
            # Split z as n + p/q with p < q
            n = p // q
            p = p - n * q
            if p.is_positive and q.is_positive and p < q:
                k = Dummy("k")
                if n.is_positive:
                    return loggamma(p / q) - n * log(q) + Sum(
                        log((k - 1) * q + p), (k, 1, n))
                elif n.is_negative:
                    return loggamma(
                        p / q) - n * log(q) + S.Pi * S.ImaginaryUnit * n - Sum(
                            log(k * q - p), (k, 1, -n))
                elif n.is_zero:
                    return loggamma(p / q)

        return self
Esempio n. 10
0
    def _eval_aseries(self, n, args0, x, logx):
        from diofant import Order
        if args0[1] != oo or not \
                (self.args[0].is_Integer and self.args[0].is_nonnegative):
            return super(polygamma, self)._eval_aseries(n, args0, x, logx)
        z = self.args[1]
        N = self.args[0]

        if N == 0:
            # digamma function series
            # Abramowitz & Stegun, p. 259, 6.3.18
            r = log(z) - 1 / (2 * z)
            o = None
            if n < 2:
                o = Order(1 / z, x)
            else:
                m = ceiling((n + 1) // 2)
                l = [
                    bernoulli(2 * k) / (2 * k * z**(2 * k))
                    for k in range(1, m)
                ]
                r -= Add(*l)
                o = Order(1 / z**(2 * m), x)
            return r._eval_nseries(x, n, logx) + o
        else:
            # proper polygamma function
            # Abramowitz & Stegun, p. 260, 6.4.10
            # We return terms to order higher than O(x**n) on purpose
            # -- otherwise we would not be able to return any terms for
            #    quite a long time!
            fac = gamma(N)
            e0 = fac + N * fac / (2 * z)
            m = ceiling((n + 1) // 2)
            for k in range(1, m):
                fac = fac * (2 * k + N - 1) * (2 * k + N - 2) / ((2 * k) *
                                                                 (2 * k - 1))
                e0 += bernoulli(2 * k) * fac / z**(2 * k)
            o = Order(1 / z**(2 * m), x)
            if n == 0:
                o = Order(1 / z, x)
            elif n == 1:
                o = Order(1 / z**2, x)
            r = e0 + o
            return (-1 * (-1 / z)**N * r)._eval_nseries(x, n, logx)
Esempio n. 11
0
 def _eval_rewrite_as_Sum(self, *args):
     from diofant.concrete.summations import Sum
     return exp(Sum(log(self.function), *self.limits))
Esempio n. 12
0
 def _eval_rewrite_as_intractable(self, z):
     return log(gamma(z))
Esempio n. 13
0
    def eval(cls, n, z):
        n, z = list(map(sympify, (n, z)))
        from diofant import unpolarify

        if n.is_integer:
            if n.is_nonnegative:
                nz = unpolarify(z)
                if z != nz:
                    return polygamma(n, nz)

            if n == -1:
                return loggamma(z)
            else:
                if z.is_Number:
                    if z is S.Infinity:
                        if n.is_Number:
                            if n is S.Zero:
                                return S.Infinity
                            else:
                                return S.Zero
                    elif z.is_Integer:
                        if z.is_nonpositive:
                            return S.ComplexInfinity
                        else:
                            if n is S.Zero:
                                return -S.EulerGamma + harmonic(z - 1, 1)
                            elif n.is_odd:
                                return (-1)**(n + 1) * factorial(n) * zeta(
                                    n + 1, z)

        if n == 0:
            if z.is_Rational:
                # TODO actually *any* n/m can be done, but that is messy
                lookup = {
                    Rational(1, 2):
                    -2 * log(2) - S.EulerGamma,
                    Rational(1, 3):
                    -S.Pi / 2 / sqrt(3) - 3 * log(3) / 2 - S.EulerGamma,
                    Rational(1, 4):
                    -S.Pi / 2 - 3 * log(2) - S.EulerGamma,
                    Rational(3, 4):
                    -3 * log(2) - S.EulerGamma + S.Pi / 2,
                    Rational(2, 3):
                    -3 * log(3) / 2 + S.Pi / 2 / sqrt(3) - S.EulerGamma
                }
                if z > 0:
                    n = floor(z)
                    z0 = z - n
                    if z0 in lookup:
                        return lookup[z0] + Add(
                            *[1 / (z0 + k) for k in range(n)])
                elif z < 0:
                    n = floor(1 - z)
                    z0 = z + n
                    if z0 in lookup:
                        return lookup[z0] - Add(
                            *[1 / (z0 - 1 - k) for k in range(n)])
            elif z in (S.Infinity, S.NegativeInfinity):
                return S.Infinity
            else:
                t = z.extract_multiplicatively(S.ImaginaryUnit)
                if t in (S.Infinity, S.NegativeInfinity):
                    return S.Infinity
Esempio n. 14
0
    def _eval_integral(self,
                       f,
                       x,
                       meijerg=None,
                       risch=None,
                       conds='piecewise'):
        """
        Calculate the anti-derivative to the function f(x).

        The following algorithms are applied (roughly in this order):

        1. Simple heuristics (based on pattern matching and integral table):

           - most frequently used functions (e.g. polynomials, products of trig functions)

        2. Integration of rational functions:

           - A complete algorithm for integrating rational functions is
             implemented (the Lazard-Rioboo-Trager algorithm).  The algorithm
             also uses the partial fraction decomposition algorithm
             implemented in apart() as a preprocessor to make this process
             faster.  Note that the integral of a rational function is always
             elementary, but in general, it may include a RootSum.

        3. Full Risch algorithm:

           - The Risch algorithm is a complete decision
             procedure for integrating elementary functions, which means that
             given any elementary function, it will either compute an
             elementary antiderivative, or else prove that none exists.
             Currently, part of transcendental case is implemented, meaning
             elementary integrals containing exponentials, logarithms, and
             (soon!) trigonometric functions can be computed.  The algebraic
             case, e.g., functions containing roots, is much more difficult
             and is not implemented yet.

           - If the routine fails (because the integrand is not elementary, or
             because a case is not implemented yet), it continues on to the
             next algorithms below.  If the routine proves that the integrals
             is nonelementary, it still moves on to the algorithms below,
             because we might be able to find a closed-form solution in terms
             of special functions.  If risch=True, however, it will stop here.

        4. The Meijer G-Function algorithm:

           - This algorithm works by first rewriting the integrand in terms of
             very general Meijer G-Function (meijerg in Diofant), integrating
             it, and then rewriting the result back, if possible.  This
             algorithm is particularly powerful for definite integrals (which
             is actually part of a different method of Integral), since it can
             compute closed-form solutions of definite integrals even when no
             closed-form indefinite integral exists.  But it also is capable
             of computing many indefinite integrals as well.

           - Another advantage of this method is that it can use some results
             about the Meijer G-Function to give a result in terms of a
             Piecewise expression, which allows to express conditionally
             convergent integrals.

           - Setting meijerg=True will cause integrate() to use only this
             method.

        5. The Heuristic Risch algorithm:

           - This is a heuristic version of the Risch algorithm, meaning that
             it is not deterministic.  This is tried as a last resort because
             it can be very slow.  It is still used because not enough of the
             full Risch algorithm is implemented, so that there are still some
             integrals that can only be computed using this method.  The goal
             is to implement enough of the Risch and Meijer G-function methods
             so that this can be deleted.
        """
        from diofant.integrals.deltafunctions import deltaintegrate
        from diofant.integrals.heurisch import heurisch, heurisch_wrapper
        from diofant.integrals.rationaltools import ratint
        from diofant.integrals.risch import risch_integrate

        if risch:
            try:
                return risch_integrate(f, x, conds=conds)
            except NotImplementedError:
                return

        # if it is a poly(x) then let the polynomial integrate itself (fast)
        #
        # It is important to make this check first, otherwise the other code
        # will return a diofant expression instead of a Polynomial.
        #
        # see Polynomial for details.
        if isinstance(f, Poly) and not meijerg:
            return f.integrate(x)

        # Piecewise antiderivatives need to call special integrate.
        if f.func is Piecewise:
            return f._eval_integral(x)

        # let's cut it short if `f` does not depend on `x`
        if not f.has(x):
            return f * x

        # try to convert to poly(x) and then integrate if successful (fast)
        poly = f.as_poly(x)

        if poly is not None and not meijerg:
            return poly.integrate().as_expr()

        if risch is not False:
            try:
                result, i = risch_integrate(f,
                                            x,
                                            separate_integral=True,
                                            conds=conds)
            except NotImplementedError:
                pass
            else:
                if i:
                    # There was a nonelementary integral. Try integrating it.
                    return result + i.doit(risch=False)
                else:
                    return result

        # since Integral(f=g1+g2+...) == Integral(g1) + Integral(g2) + ...
        # we are going to handle Add terms separately,
        # if `f` is not Add -- we only have one term

        # Note that in general, this is a bad idea, because Integral(g1) +
        # Integral(g2) might not be computable, even if Integral(g1 + g2) is.
        # For example, Integral(x**x + x**x*log(x)).  But many heuristics only
        # work term-wise.  So we compute this step last, after trying
        # risch_integrate.  We also try risch_integrate again in this loop,
        # because maybe the integral is a sum of an elementary part and a
        # nonelementary part (like erf(x) + exp(x)).  risch_integrate() is
        # quite fast, so this is acceptable.
        parts = []
        args = Add.make_args(f)
        for g in args:
            coeff, g = g.as_independent(x)

            # g(x) = const
            if g is S.One and not meijerg:
                parts.append(coeff * x)
                continue

            # g(x) = expr + O(x**n)
            order_term = g.getO()

            if order_term is not None:
                h = self._eval_integral(g.removeO(), x)

                if h is not None:
                    parts.append(coeff *
                                 (h + self.func(order_term, *self.limits)))
                    continue

                # NOTE: if there is O(x**n) and we fail to integrate then there is
                # no point in trying other methods because they will fail anyway.
                return

            #               c
            # g(x) = (a*x+b)
            if g.is_Pow and not g.exp.has(x) and not meijerg:
                a = Wild('a', exclude=[x])
                b = Wild('b', exclude=[x])

                M = g.base.match(a * x + b)

                if M is not None:
                    if g.exp == -1:
                        h = log(g.base)
                    elif conds != 'piecewise':
                        h = g.base**(g.exp + 1) / (g.exp + 1)
                    else:
                        h1 = log(g.base)
                        h2 = g.base**(g.exp + 1) / (g.exp + 1)
                        h = Piecewise((h1, Eq(g.exp, -1)), (h2, True))

                    parts.append(coeff * h / M[a])
                    continue

            #        poly(x)
            # g(x) = -------
            #        poly(x)
            if g.is_rational_function(x) and not meijerg:
                parts.append(coeff * ratint(g, x))
                continue

            if not meijerg:
                # g(x) = Mul(trig)
                h = trigintegrate(g, x, conds=conds)
                if h is not None:
                    parts.append(coeff * h)
                    continue

                # g(x) has at least a DiracDelta term
                h = deltaintegrate(g, x)
                if h is not None:
                    parts.append(coeff * h)
                    continue

                # Try risch again.
                if risch is not False:
                    try:
                        h, i = risch_integrate(g,
                                               x,
                                               separate_integral=True,
                                               conds=conds)
                    except NotImplementedError:
                        h = None
                    else:
                        if i:
                            h = h + i.doit(risch=False)

                        parts.append(coeff * h)
                        continue

                # fall back to heurisch
                try:
                    if conds == 'piecewise':
                        h = heurisch_wrapper(g, x, hints=[])
                    else:
                        h = heurisch(g, x, hints=[])
                except PolynomialError:
                    # XXX: this exception means there is a bug in the
                    # implementation of heuristic Risch integration
                    # algorithm.
                    h = None
            else:
                h = None

            if meijerg is not False and h is None:
                # rewrite using G functions
                try:
                    h = meijerint_indefinite(g, x)
                except NotImplementedError:
                    from diofant.integrals.meijerint import _debug
                    _debug('NotImplementedError from meijerint_definite')
                    res = None
                if h is not None:
                    parts.append(coeff * h)
                    continue

            # if we failed maybe it was because we had
            # a product that could have been expanded,
            # so let's try an expansion of the whole
            # thing before giving up; we don't try this
            # at the outset because there are things
            # that cannot be solved unless they are
            # NOT expanded e.g., x**x*(1+log(x)). There
            # should probably be a checker somewhere in this
            # routine to look for such cases and try to do
            # collection on the expressions if they are already
            # in an expanded form
            if not h and len(args) == 1:
                f = f.expand(mul=True, deep=False)
                if f.is_Add:
                    # Note: risch will be identical on the expanded
                    # expression, but maybe it will be able to pick out parts,
                    # like x*(exp(x) + erf(x)).
                    return self._eval_integral(f,
                                               x,
                                               meijerg=meijerg,
                                               risch=risch,
                                               conds=conds)

            if h is not None:
                parts.append(coeff * h)
            else:
                return

        return Add(*parts)
Esempio n. 15
0
 def fdiff(self, argindex=1):
     from diofant import polygamma, log
     n = self.args[0]
     return catalan(n) * (polygamma(0, n + Rational(1, 2)) -
                          polygamma(0, n + 2) + log(4))