Esempio n. 1
0
def test_RootOf():
    p = MpmathPrinter()

    e = RootOf(x**3 + x - 1, x, 0)
    r = ('findroot(lambda x: x**3 + x - 1, (%s, %s), '
         "method='bisection')" % (p.doprint(QQ(0)), p.doprint(QQ(1))))

    assert p.doprint(e) == r

    e = RootOf(x**3 + x - 1, x, 1)
    r = ('findroot(lambda x: x**3 + x - 1, mpc(%s, %s), '
         "method='secant')" % (p.doprint(QQ(-3, 8)), p.doprint(QQ(-9, 8))))

    assert p.doprint(e) == r
Esempio n. 2
0
def test_Pow():
    p = MpmathPrinter()

    assert p.doprint(sqrt(pi)) == 'root(pi, 2)'
    assert p.doprint(pi**Rational(2, 3)) == 'root(pi, 3)**2'
    assert p.doprint(pi**Rational(-2, 3)) == 'power(root(pi, 3), -2)'
    assert p.doprint(pi**pi) == 'pi**pi'
Esempio n. 3
0
def test_RootOf():
    p = MpmathPrinter()
    e = RootOf(x**3 + x - 1, x, 0)
    r = ("findroot(lambda x: x**3 + x - 1, (%s, %s), "
         "method='bisection')" % (p.doprint(QQ(0)), p.doprint(QQ(1))))
    assert p.doprint(e) == r
Esempio n. 4
0
def test_Sum():
    p = MpmathPrinter()
    s = Sum(n**(-2), (n, 1, oo))
    assert p.doprint(s) == 'nsum(lambda n: n**(-2), (1, inf))'
Esempio n. 5
0
def test_RootOf():
    p = MpmathPrinter()
    e = RootOf(x**3 + x - 1, x, 0)
    r = ("findroot(lambda x: x**3 + x - 1, (%s, %s), "
         "method='bisection')" % (p.doprint(QQ(0)), p.doprint(QQ(1))))
    assert p.doprint(e) == r
Esempio n. 6
0
def test_Sum():
    p = MpmathPrinter()
    s = Sum(n**(-2), (n, 1, oo))
    assert p.doprint(s) == 'nsum(lambda n: n**(-2), (1, inf))'
Esempio n. 7
0
def test_basic():
    p = MpmathPrinter()

    assert p.doprint(GoldenRatio) == 'phi'
    assert p.doprint(Rational(2)) == '2'
    assert p.doprint(Rational(2, 3)) == '2*power(3, -1)'
Esempio n. 8
0
def test_basic():
    p = MpmathPrinter()

    assert p.doprint(GoldenRatio) == "phi"