def test_RootOf(): p = MpmathPrinter() e = RootOf(x**3 + x - 1, x, 0) r = ('findroot(lambda x: x**3 + x - 1, (%s, %s), ' "method='bisection')" % (p.doprint(QQ(0)), p.doprint(QQ(1)))) assert p.doprint(e) == r e = RootOf(x**3 + x - 1, x, 1) r = ('findroot(lambda x: x**3 + x - 1, mpc(%s, %s), ' "method='secant')" % (p.doprint(QQ(-3, 8)), p.doprint(QQ(-9, 8)))) assert p.doprint(e) == r
def test_Pow(): p = MpmathPrinter() assert p.doprint(sqrt(pi)) == 'root(pi, 2)' assert p.doprint(pi**Rational(2, 3)) == 'root(pi, 3)**2' assert p.doprint(pi**Rational(-2, 3)) == 'power(root(pi, 3), -2)' assert p.doprint(pi**pi) == 'pi**pi'
def test_RootOf(): p = MpmathPrinter() e = RootOf(x**3 + x - 1, x, 0) r = ("findroot(lambda x: x**3 + x - 1, (%s, %s), " "method='bisection')" % (p.doprint(QQ(0)), p.doprint(QQ(1)))) assert p.doprint(e) == r
def test_Sum(): p = MpmathPrinter() s = Sum(n**(-2), (n, 1, oo)) assert p.doprint(s) == 'nsum(lambda n: n**(-2), (1, inf))'
def test_basic(): p = MpmathPrinter() assert p.doprint(GoldenRatio) == 'phi' assert p.doprint(Rational(2)) == '2' assert p.doprint(Rational(2, 3)) == '2*power(3, -1)'
def test_basic(): p = MpmathPrinter() assert p.doprint(GoldenRatio) == "phi"