Esempio n. 1
0
def test_partial_simp():
    # First test that hypergeometric function formulae work.
    a, b, c, d, e = (randcplx() for _ in range(5))
    for func in [Hyper_Function([a, b, c], [d, e]),
            Hyper_Function([], [a, b, c, d, e])]:
        f = build_hypergeometric_formula(func)
        z = f.z
        assert f.closed_form == func(z)
        deriv1 = f.B.diff(z)*z
        deriv2 = f.M*f.B
        for func1, func2 in zip(deriv1, deriv2):
            assert tn(func1, func2, z)

    # Now test that formulae are partially simplified.
    from diofant.abc import a, b, z
    assert hyperexpand(hyper([3, a], [1, b], z)) == \
        (-a*b/2 + a*z/2 + 2*a)*hyper([a + 1], [b], z) \
        + (a*b/2 - 2*a + 1)*hyper([a], [b], z)
    assert tn(
        hyperexpand(hyper([3, d], [1, e], z)), hyper([3, d], [1, e], z), z)
    assert hyperexpand(hyper([3], [1, a, b], z)) == \
        hyper((), (a, b), z) \
        + z*hyper((), (a + 1, b), z)/(2*a) \
        - z*(b - 4)*hyper((), (a + 1, b + 1), z)/(2*a*b)
    assert tn(
        hyperexpand(hyper([3], [1, d, e], z)), hyper([3], [1, d, e], z), z)
Esempio n. 2
0
def test_partial_simp():
    # First test that hypergeometric function formulae work.
    a, b, c, d, e = (randcplx() for _ in range(5))
    for func in [Hyper_Function([a, b, c], [d, e]),
                 Hyper_Function([], [a, b, c, d, e])]:
        f = build_hypergeometric_formula(func)
        z = f.z
        assert f.closed_form == func(z)
        deriv1 = f.B.diff(z)*z
        deriv2 = f.M*f.B
        for func1, func2 in zip(deriv1, deriv2):
            assert tn(func1, func2, z)
Esempio n. 3
0
def test_plan_derivatives():
    a1, a2, a3 = 1, 2, Rational(1, 2)
    b1, b2 = 3, Rational(5, 2)
    h = Hyper_Function((a1, a2, a3), (b1, b2))
    h2 = Hyper_Function((a1 + 1, a2 + 1, a3 + 2), (b1 + 1, b2 + 1))
    ops = devise_plan(h2, h, z)
    f = Formula(h, z, h(z), [])
    deriv = make_derivative_operator(f.M, z)
    assert tn((apply_operators(f.C, ops, deriv)*f.B)[0], h2(z), z)

    h2 = Hyper_Function((a1, a2 - 1, a3 - 2), (b1 - 1, b2 - 1))
    ops = devise_plan(h2, h, z)
    assert tn((apply_operators(f.C, ops, deriv)*f.B)[0], h2(z), z)
Esempio n. 4
0
def test_attrs():
    a, b = symbols('a, b', cls=Dummy)
    f = Hyper_Function([2, a], [b])
    assert f.ap == Tuple(2, a)
    assert f.bq == Tuple(b)
    assert f.args == (Tuple(2, a), Tuple(b))
    assert f.sizes == (2, 1)
Esempio n. 5
0
def test_reduction_operators():
    a1, a2, b1 = (randcplx(n) for n in range(3))
    h = hyper([a1], [b1], z)

    assert ReduceOrder(2, 0) is None
    assert ReduceOrder(2, -1) is None
    assert ReduceOrder(1, Rational(1, 2)) is None

    h2 = hyper((a1, a2), (b1, a2), z)
    assert tn(ReduceOrder(a2, a2).apply(h, op), h2, z)

    assert str(ReduceOrder(a2,
                           a2)).find('<Reduce order by cancelling upper ') == 0

    h2 = hyper((a1, a2 + 1), (b1, a2), z)
    assert tn(ReduceOrder(a2 + 1, a2).apply(h, op), h2, z)

    h2 = hyper((a2 + 4, a1), (b1, a2), z)
    assert tn(ReduceOrder(a2 + 4, a2).apply(h, op), h2, z)

    # test several step order reduction
    ap = (a2 + 4, a1, b1 + 1)
    bq = (a2, b1, b1)
    func, ops = reduce_order(Hyper_Function(ap, bq))
    assert func.ap == (a1, )
    assert func.bq == (b1, )
    assert tn(apply_operators(h, ops, op), hyper(ap, bq, z), z)
Esempio n. 6
0
def test_gamma():
    assert Hyper_Function([2, 3], [-1]).gamma == 0
    assert Hyper_Function([-2, -3], [-1]).gamma == 2
    n = Dummy(integer=True)
    assert Hyper_Function([-1, n, 1], []).gamma == 1
    assert Hyper_Function([-1, -n, 1], []).gamma == 1
    p = Dummy(integer=True, positive=True)
    assert Hyper_Function([-1, p, 1], []).gamma == 1
    assert Hyper_Function([-1, -p, 1], []).gamma == 2
Esempio n. 7
0
def test_suitable_origin():
    assert Hyper_Function((Rational(1, 2), ),
                          (Rational(3, 2), ))._is_suitable_origin() is True
    assert Hyper_Function((Rational(1, 2), ),
                          (Rational(1, 2), ))._is_suitable_origin() is False
    assert Hyper_Function((Rational(1, 2), ),
                          (-Rational(1, 2), ))._is_suitable_origin() is False
    assert Hyper_Function((Rational(1, 2), ),
                          (0, ))._is_suitable_origin() is False
    assert Hyper_Function((Rational(1, 2), ), (
        -1,
        1,
    ))._is_suitable_origin() is False
    assert Hyper_Function((Rational(1, 2), 0),
                          (1, ))._is_suitable_origin() is False
    assert Hyper_Function((Rational(1, 2), 1),
                          (2, -Rational(2, 3)))._is_suitable_origin() is True
    assert Hyper_Function(
        (Rational(1, 2), 1),
        (2, -Rational(2, 3), Rational(3, 2)))._is_suitable_origin() is True
Esempio n. 8
0
def test_eq():
    assert Hyper_Function([1], []) == Hyper_Function([1], [])
    assert (Hyper_Function([1], []) != Hyper_Function([1], [])) is False
    assert Hyper_Function([1], []) != Hyper_Function([2], [])
    assert Hyper_Function([1], []) != Hyper_Function([1, 2], [])
    assert Hyper_Function([1], []) != Hyper_Function([1], [2])
Esempio n. 9
0
def test_has():
    a, b, c = symbols('a, b, c', cls=Dummy)
    f = Hyper_Function([2, -a], [b])
    assert f.has(a)
    assert f.has(Tuple(b))
    assert not f.has(c)
Esempio n. 10
0
def test_call():
    a, b, x = symbols('a, b, x', cls=Dummy)
    f = Hyper_Function([2, a], [b])
    assert f(x) == hyper([2, a], [b], x)
Esempio n. 11
0
def test_plan():
    assert devise_plan(Hyper_Function([0], ()),
            Hyper_Function([0], ()), z) == []
    with pytest.raises(ValueError):
        devise_plan(Hyper_Function([1], ()), Hyper_Function((), ()), z)
    with pytest.raises(ValueError):
        devise_plan(Hyper_Function([2], [1]), Hyper_Function([2], [2]), z)
    with pytest.raises(ValueError):
        devise_plan(Hyper_Function([2], []), Hyper_Function([Rational(1, 2)], []), z)

    # We cannot use pi/(10000 + n) because polys is insanely slow.
    a1, a2, b1 = (randcplx(n) for n in range(3))
    b1 += 2*I
    h = hyper([a1, a2], [b1], z)

    h2 = hyper((a1 + 1, a2), [b1], z)
    assert tn(apply_operators(h,
        devise_plan(Hyper_Function((a1 + 1, a2), [b1]),
            Hyper_Function((a1, a2), [b1]), z), op),
        h2, z)

    h2 = hyper((a1 + 1, a2 - 1), [b1], z)
    assert tn(apply_operators(h,
        devise_plan(Hyper_Function((a1 + 1, a2 - 1), [b1]),
            Hyper_Function((a1, a2), [b1]), z), op),
        h2, z)