Esempio n. 1
0
    def as_real_imag(self, deep=True, **hints):
        """
        Returns this function as a complex coordinate.

        Examples
        ========

        >>> from diofant import I
        >>> from diofant.abc import x
        >>> from diofant.functions import log
        >>> log(x).as_real_imag()
        (log(Abs(x)), arg(x))
        >>> log(I).as_real_imag()
        (0, pi/2)
        >>> log(1 + I).as_real_imag()
        (log(sqrt(2)), pi/4)
        >>> log(I*x).as_real_imag()
        (log(Abs(x)), arg(I*x))

        """
        from diofant import Abs, arg
        if deep:
            abs = Abs(self.args[0].expand(deep, **hints))
            arg = arg(self.args[0].expand(deep, **hints))
        else:
            abs = Abs(self.args[0])
            arg = arg(self.args[0])
        if hints.get('log', False):  # Expand the log
            hints['complex'] = False
            return log(abs).expand(deep, **hints), arg
        else:
            return log(abs), arg
Esempio n. 2
0
def test_erfc():
    assert erfc(nan) == nan

    assert erfc(oo) == 0
    assert erfc(-oo) == 2

    assert erfc(0) == 1

    assert erfc(I * oo) == -oo * I
    assert erfc(-I * oo) == oo * I

    assert erfc(-x) == Integer(2) - erfc(x)
    assert erfc(erfcinv(x)) == x
    assert erfc(erfinv(x)) == 1 - x

    assert erfc(I).is_extended_real is False
    assert erfc(w).is_extended_real is True
    assert erfc(z).is_extended_real is None

    assert conjugate(erfc(z)) == erfc(conjugate(z))

    assert erfc(x).as_leading_term(x) == 1
    assert erfc(1 / x).as_leading_term(x) == erfc(1 / x)

    assert erfc(z).rewrite('erf') == 1 - erf(z)
    assert erfc(z).rewrite('erfi') == 1 + I * erfi(I * z)
    assert erfc(z).rewrite('fresnels') == 1 - (1 + I) * (
        fresnelc(z * (1 - I) / sqrt(pi)) - I * fresnels(z *
                                                        (1 - I) / sqrt(pi)))
    assert erfc(z).rewrite('fresnelc') == 1 - (1 + I) * (
        fresnelc(z * (1 - I) / sqrt(pi)) - I * fresnels(z *
                                                        (1 - I) / sqrt(pi)))
    assert erfc(z).rewrite('hyper') == 1 - 2 * z * hyper(
        [Rational(1, 2)], [Rational(3, 2)], -z**2) / sqrt(pi)
    assert erfc(z).rewrite('meijerg') == 1 - z * meijerg(
        [Rational(1, 2)], [], [0], [Rational(-1, 2)], z**2) / sqrt(pi)
    assert erfc(z).rewrite(
        'uppergamma') == 1 - sqrt(z**2) * erf(sqrt(z**2)) / z
    assert erfc(z).rewrite('expint') == 1 - sqrt(z**2) / z + z * expint(
        Rational(1, 2), z**2) / sqrt(pi)

    assert erfc(x).as_real_imag() == \
        ((erfc(re(x) - I*re(x)*Abs(im(x))/Abs(re(x)))/2 +
          erfc(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))/2,
          I*(erfc(re(x) - I*re(x)*Abs(im(x))/Abs(re(x))) -
             erfc(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))) *
          re(x)*Abs(im(x))/(2*im(x)*Abs(re(x)))))
    assert erfc(x).as_real_imag(deep=False) == erfc(x).as_real_imag()
    assert erfc(w).as_real_imag() == (erfc(w), 0)
    assert erfc(w).as_real_imag(deep=False) == erfc(w).as_real_imag()
    assert erfc(I).as_real_imag() == (1, -erfi(1))

    pytest.raises(ArgumentIndexError, lambda: erfc(x).fdiff(2))

    assert erfc(x).taylor_term(3, x, *(-2 * x / sqrt(pi),
                                       0)) == 2 * x**3 / 3 / sqrt(pi)

    assert erfc(x).limit(x, oo) == 0

    assert erfc(x).diff(x) == -2 * exp(-x**2) / sqrt(pi)
Esempio n. 3
0
def test_real_imag():
    x, y, z = symbols('x, y, z')
    X, Y, Z = symbols('X, Y, Z', commutative=False)
    a = Symbol('a', extended_real=True)
    assert (2 * a * x).as_real_imag() == (2 * a * re(x), 2 * a * im(x))

    # issue 5395:
    assert (x * x.conjugate()).as_real_imag() == (Abs(x)**2, 0)
    assert im(x * x.conjugate()) == 0
    assert im(x * y.conjugate() * z * y) == im(x * z) * Abs(y)**2
    assert im(x * y.conjugate() * x * y) == im(x**2) * Abs(y)**2
    assert im(Z * y.conjugate() * X * y) == im(Z * X) * Abs(y)**2
    assert im(X * X.conjugate()) == im(X * X.conjugate(), evaluate=False)
    assert (sin(x)*sin(x).conjugate()).as_real_imag() == \
        (Abs(sin(x))**2, 0)

    # issue 6573:
    assert (x**2).as_real_imag() == (re(x)**2 - im(x)**2, 2 * re(x) * im(x))

    # issue 6428:
    r = Symbol('r', extended_real=True)
    i = Symbol('i', imaginary=True)
    assert (i * r * x).as_real_imag() == (I * i * r * im(x),
                                          -I * i * r * re(x))
    assert (i * r * x *
            (y + 2)).as_real_imag() == (I * i * r * (re(y) + 2) * im(x) +
                                        I * i * r * re(x) * im(y),
                                        -I * i * r * (re(y) + 2) * re(x) +
                                        I * i * r * im(x) * im(y))

    # issue 7106:
    assert ((1 + I) / (1 - I)).as_real_imag() == (0, 1)
    assert ((1 + 2 * I) * (1 + 3 * I)).as_real_imag() == (-5, 5)
Esempio n. 4
0
def test_periodic_argument():
    p = Symbol('p', positive=True)

    assert unbranched_argument(2 + I) == periodic_argument(2 + I, oo)
    assert unbranched_argument(1 + x) == periodic_argument(1 + x, oo)
    assert N_equals(unbranched_argument((1 + I)**2), pi/2)
    assert N_equals(unbranched_argument((1 - I)**2), -pi/2)
    assert N_equals(periodic_argument((1 + I)**2, 3*pi), pi/2)
    assert N_equals(periodic_argument((1 - I)**2, 3*pi), -pi/2)

    assert unbranched_argument(principal_branch(x, pi)) == \
        periodic_argument(x, pi)

    assert unbranched_argument(polar_lift(2 + I)) == unbranched_argument(2 + I)
    assert periodic_argument(polar_lift(2 + I), 2*pi) == \
        periodic_argument(2 + I, 2*pi)
    assert periodic_argument(polar_lift(2 + I), 3*pi) == \
        periodic_argument(2 + I, 3*pi)
    assert periodic_argument(polar_lift(2 + I), pi) == \
        periodic_argument(polar_lift(2 + I), pi)

    assert unbranched_argument(polar_lift(1 + I)) == pi/4
    assert periodic_argument(2*p, p) == periodic_argument(p, p)
    assert periodic_argument(pi*p, p) == periodic_argument(p, p)

    assert Abs(polar_lift(1 + I)) == Abs(1 + I)

    assert periodic_argument(x, pi).is_real is True
    assert periodic_argument(x, oo, evaluate=False).is_real is None
Esempio n. 5
0
def test_erf():
    assert erf(nan) == nan

    assert erf(oo) == 1
    assert erf(-oo) == -1

    assert erf(0) == 0

    assert erf(I * oo) == oo * I
    assert erf(-I * oo) == -oo * I

    assert erf(-2) == -erf(2)
    assert erf(-x * y) == -erf(x * y)
    assert erf(-x - y) == -erf(x + y)

    assert erf(erfinv(x)) == x
    assert erf(erfcinv(x)) == 1 - x
    assert erf(erf2inv(0, x)) == x
    assert erf(erf2inv(0, erf(erfcinv(1 - erf(erfinv(x)))))) == x

    assert erf(I).is_extended_real is False
    assert erf(w).is_extended_real is True
    assert erf(z).is_extended_real is None

    assert conjugate(erf(z)) == erf(conjugate(z))

    assert erf(x).as_leading_term(x) == 2 * x / sqrt(pi)
    assert erf(1 / x).as_leading_term(x) == erf(1 / x)

    assert erf(z).rewrite('uppergamma') == sqrt(z**2) * erf(sqrt(z**2)) / z
    assert erf(z).rewrite('erfc') == S.One - erfc(z)
    assert erf(z).rewrite('erfi') == -I * erfi(I * z)
    assert erf(z).rewrite('fresnels') == (1 + I) * (
        fresnelc(z * (1 - I) / sqrt(pi)) - I * fresnels(z *
                                                        (1 - I) / sqrt(pi)))
    assert erf(z).rewrite('fresnelc') == (1 + I) * (
        fresnelc(z * (1 - I) / sqrt(pi)) - I * fresnels(z *
                                                        (1 - I) / sqrt(pi)))
    assert erf(z).rewrite('hyper') == 2 * z * hyper([S.Half], [3 * S.Half],
                                                    -z**2) / sqrt(pi)
    assert erf(z).rewrite('meijerg') == z * meijerg([S.Half], [], [0],
                                                    [-S.Half], z**2) / sqrt(pi)
    assert erf(z).rewrite(
        'expint') == sqrt(z**2) / z - z * expint(S.Half, z**2) / sqrt(S.Pi)

    assert limit(exp(x)*exp(x**2)*(erf(x + 1/exp(x)) - erf(x)), x, oo) == \
        2/sqrt(pi)
    assert limit((1 - erf(z)) * exp(z**2) * z, z, oo) == 1 / sqrt(pi)
    assert limit((1 - erf(x)) * exp(x**2) * sqrt(pi) * x, x, oo) == 1
    assert limit(((1 - erf(x)) * exp(x**2) * sqrt(pi) * x - 1) * 2 * x**2, x,
                 oo) == -1

    assert erf(x).as_real_imag() == \
        ((erf(re(x) - I*re(x)*Abs(im(x))/Abs(re(x)))/2 +
         erf(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))/2,
         I*(erf(re(x) - I*re(x)*Abs(im(x))/Abs(re(x))) -
         erf(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))) *
         re(x)*Abs(im(x))/(2*im(x)*Abs(re(x)))))

    pytest.raises(ArgumentIndexError, lambda: erf(x).fdiff(2))
Esempio n. 6
0
def test_issue_7173():
    assert laplace_transform(sinh(a*x)*cosh(a*x), x, s) == \
        (a/(s**2 - 4*a**2), 0,
        And(Or(Abs(periodic_argument(exp_polar(I*pi)*polar_lift(a), oo)) <
        pi/2, Abs(periodic_argument(exp_polar(I*pi)*polar_lift(a), oo)) <=
        pi/2), Or(Abs(periodic_argument(a, oo)) < pi/2,
        Abs(periodic_argument(a, oo)) <= pi/2)))
Esempio n. 7
0
def test_numpy_numexpr():
    a, b, c = numpy.random.randn(3, 128, 128)
    # ensure that numpy and numexpr return same value for complicated expression
    expr = (sin(x) + cos(y) + tan(z)**2 + Abs(z - y)*acos(sin(y*z)) +
            Abs(y - z)*acosh(2 + exp(y - x)) - sqrt(x**2 + I*y**2))
    npfunc = lambdify((x, y, z), expr, modules='numpy')
    nefunc = lambdify((x, y, z), expr, modules='numexpr')
    assert numpy.allclose(npfunc(a, b, c), nefunc(a, b, c))
Esempio n. 8
0
def test_erfi():
    assert erfi(nan) == nan

    assert erfi(+oo) == +oo
    assert erfi(-oo) == -oo

    assert erfi(0) == 0

    assert erfi(I * oo) == I
    assert erfi(-I * oo) == -I

    assert erfi(-x) == -erfi(x)

    assert erfi(I * erfinv(x)) == I * x
    assert erfi(I * erfcinv(x)) == I * (1 - x)
    assert erfi(I * erf2inv(0, x)) == I * x

    assert erfi(I).is_extended_real is False
    assert erfi(w).is_extended_real is True
    assert erfi(z).is_extended_real is None

    assert conjugate(erfi(z)) == erfi(conjugate(z))

    assert erfi(z).rewrite('erf') == -I * erf(I * z)
    assert erfi(z).rewrite('erfc') == I * erfc(I * z) - I
    assert erfi(z).rewrite('fresnels') == (1 - I) * (
        fresnelc(z * (1 + I) / sqrt(pi)) - I * fresnels(z *
                                                        (1 + I) / sqrt(pi)))
    assert erfi(z).rewrite('fresnelc') == (1 - I) * (
        fresnelc(z * (1 + I) / sqrt(pi)) - I * fresnels(z *
                                                        (1 + I) / sqrt(pi)))
    assert erfi(z).rewrite('hyper') == 2 * z * hyper(
        [Rational(1, 2)], [Rational(3, 2)], z**2) / sqrt(pi)
    assert erfi(z).rewrite('meijerg') == z * meijerg(
        [Rational(1, 2)], [], [0], [Rational(-1, 2)], -z**2) / sqrt(pi)
    assert erfi(z).rewrite('uppergamma') == (
        sqrt(-z**2) / z * (uppergamma(Rational(1, 2), -z**2) / sqrt(pi) - 1))
    assert erfi(z).rewrite('expint') == sqrt(-z**2) / z - z * expint(
        Rational(1, 2), -z**2) / sqrt(pi)

    assert erfi(x).as_real_imag() == \
        ((erfi(re(x) - I*re(x)*Abs(im(x))/Abs(re(x)))/2 +
          erfi(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))/2,
          I*(erfi(re(x) - I*re(x)*Abs(im(x))/Abs(re(x))) -
             erfi(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))) *
          re(x)*Abs(im(x))/(2*im(x)*Abs(re(x)))))
    assert erfi(x).as_real_imag(deep=False) == erfi(x).as_real_imag()
    assert erfi(w).as_real_imag() == (erfi(w), 0)
    assert erfi(w).as_real_imag(deep=False) == erfi(w).as_real_imag()
    assert erfi(I).as_real_imag() == (0, erf(1))

    pytest.raises(ArgumentIndexError, lambda: erfi(x).fdiff(2))

    assert erfi(x).taylor_term(3, x, *(2 * x / sqrt(pi),
                                       0)) == 2 * x**3 / 3 / sqrt(pi)

    assert erfi(x).limit(x, oo) == oo
Esempio n. 9
0
def test_Abs_rewrite():
    x = Symbol('x', extended_real=True)
    a = Abs(x).rewrite(Heaviside).expand()
    assert a == x*Heaviside(x) - x*Heaviside(-x)
    for i in [-2, -1, 0, 1, 2]:
        assert a.subs({x: i}) == abs(i)
    y = Symbol('y')
    assert Abs(y).rewrite(Heaviside) == Abs(y)

    x, y = Symbol('x', extended_real=True), Symbol('y')
    assert Abs(x).rewrite(Piecewise) == Piecewise((x, x >= 0), (-x, True))
    assert Abs(y).rewrite(Piecewise) == Abs(y)
    assert Abs(y).rewrite(sign) == y/sign(y)
Esempio n. 10
0
def test_derivatives_issue_4757():
    x = Symbol('x', extended_real=True)
    y = Symbol('y', imaginary=True)
    f = Function('f')
    assert re(f(x)).diff(x) == re(f(x).diff(x))
    assert im(f(x)).diff(x) == im(f(x).diff(x))
    assert re(f(y)).diff(y) == -I * im(f(y).diff(y))
    assert im(f(y)).diff(y) == -I * re(f(y).diff(y))
    assert Abs(f(x)).diff(x).subs(f(x), 1 + I * x).doit() == x / sqrt(1 + x**2)
    assert arg(f(x)).diff(x).subs(f(x),
                                  1 + I * x**2).doit() == 2 * x / (1 + x**4)
    assert Abs(f(y)).diff(y).subs(f(y), 1 + y).doit() == -y / sqrt(1 - y**2)
    assert arg(f(y)).diff(y).subs(f(y), I + y**2).doit() == 2 * y / (1 + y**4)
Esempio n. 11
0
def test_airy_base():
    z = Symbol('z')
    x = Symbol('x', extended_real=True)
    y = Symbol('y', extended_real=True)

    assert conjugate(airyai(z)) == airyai(conjugate(z))
    assert airyai(x).is_extended_real
    assert airyai(z).is_extended_real is None

    assert airyai(x + I * y).as_real_imag() == (
        airyai(x - I * x * Abs(y) / Abs(x)) / 2 +
        airyai(x + I * x * Abs(y) / Abs(x)) / 2, I * x *
        (airyai(x - I * x * Abs(y) / Abs(x)) -
         airyai(x + I * x * Abs(y) / Abs(x))) * Abs(y) / (2 * y * Abs(x)))
Esempio n. 12
0
def test_erfc():
    assert erfc(nan) == nan

    assert erfc(oo) == 0
    assert erfc(-oo) == 2

    assert erfc(0) == 1

    assert erfc(I * oo) == -oo * I
    assert erfc(-I * oo) == oo * I

    assert erfc(-x) == Integer(2) - erfc(x)
    assert erfc(erfcinv(x)) == x

    assert erfc(I).is_extended_real is False
    assert erfc(w).is_extended_real is True
    assert erfc(z).is_extended_real is None

    assert conjugate(erfc(z)) == erfc(conjugate(z))

    assert erfc(x).as_leading_term(x) == S.One
    assert erfc(1 / x).as_leading_term(x) == erfc(1 / x)

    assert erfc(z).rewrite('erf') == 1 - erf(z)
    assert erfc(z).rewrite('erfi') == 1 + I * erfi(I * z)
    assert erfc(z).rewrite('fresnels') == 1 - (1 + I) * (
        fresnelc(z * (1 - I) / sqrt(pi)) - I * fresnels(z *
                                                        (1 - I) / sqrt(pi)))
    assert erfc(z).rewrite('fresnelc') == 1 - (1 + I) * (
        fresnelc(z * (1 - I) / sqrt(pi)) - I * fresnels(z *
                                                        (1 - I) / sqrt(pi)))
    assert erfc(z).rewrite(
        'hyper') == 1 - 2 * z * hyper([S.Half], [3 * S.Half], -z**2) / sqrt(pi)
    assert erfc(z).rewrite('meijerg') == 1 - z * meijerg(
        [S.Half], [], [0], [-S.Half], z**2) / sqrt(pi)
    assert erfc(z).rewrite(
        'uppergamma') == 1 - sqrt(z**2) * erf(sqrt(z**2)) / z
    assert erfc(z).rewrite('expint') == S.One - sqrt(z**2) / z + z * expint(
        S.Half, z**2) / sqrt(S.Pi)

    assert erfc(x).as_real_imag() == \
        ((erfc(re(x) - I*re(x)*Abs(im(x))/Abs(re(x)))/2 +
         erfc(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))/2,
         I*(erfc(re(x) - I*re(x)*Abs(im(x))/Abs(re(x))) -
         erfc(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))) *
         re(x)*Abs(im(x))/(2*im(x)*Abs(re(x)))))

    pytest.raises(ArgumentIndexError, lambda: erfc(x).fdiff(2))
Esempio n. 13
0
def test_erfi():
    assert erfi(nan) == nan

    assert erfi(oo) == S.Infinity
    assert erfi(-oo) == S.NegativeInfinity

    assert erfi(0) == S.Zero

    assert erfi(I * oo) == I
    assert erfi(-I * oo) == -I

    assert erfi(-x) == -erfi(x)

    assert erfi(I * erfinv(x)) == I * x
    assert erfi(I * erfcinv(x)) == I * (1 - x)
    assert erfi(I * erf2inv(0, x)) == I * x

    assert erfi(I).is_extended_real is False
    assert erfi(w).is_extended_real is True
    assert erfi(z).is_extended_real is None

    assert conjugate(erfi(z)) == erfi(conjugate(z))

    assert erfi(z).rewrite('erf') == -I * erf(I * z)
    assert erfi(z).rewrite('erfc') == I * erfc(I * z) - I
    assert erfi(z).rewrite('fresnels') == (1 - I) * (
        fresnelc(z * (1 + I) / sqrt(pi)) - I * fresnels(z *
                                                        (1 + I) / sqrt(pi)))
    assert erfi(z).rewrite('fresnelc') == (1 - I) * (
        fresnelc(z * (1 + I) / sqrt(pi)) - I * fresnels(z *
                                                        (1 + I) / sqrt(pi)))
    assert erfi(z).rewrite('hyper') == 2 * z * hyper([S.Half], [3 * S.Half], z
                                                     **2) / sqrt(pi)
    assert erfi(z).rewrite('meijerg') == z * meijerg(
        [S.Half], [], [0], [-S.Half], -z**2) / sqrt(pi)
    assert erfi(z).rewrite('uppergamma') == (
        sqrt(-z**2) / z * (uppergamma(S.Half, -z**2) / sqrt(S.Pi) - S.One))
    assert erfi(z).rewrite(
        'expint') == sqrt(-z**2) / z - z * expint(S.Half, -z**2) / sqrt(S.Pi)

    assert erfi(x).as_real_imag() == \
        ((erfi(re(x) - I*re(x)*Abs(im(x))/Abs(re(x)))/2 +
         erfi(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))/2,
         I*(erfi(re(x) - I*re(x)*Abs(im(x))/Abs(re(x))) -
         erfi(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))) *
         re(x)*Abs(im(x))/(2*im(x)*Abs(re(x)))))

    pytest.raises(ArgumentIndexError, lambda: erfi(x).fdiff(2))
Esempio n. 14
0
def test_imageset_intersect_real():
    assert (imageset(Lambda(n, n + (n - 1)*(n + 1)*I),
                     S.Integers).intersect(S.Reals) ==
            FiniteSet(-1, 1))

    s = ImageSet(Lambda(n, -I*(I*(2*pi*n - pi/4) + log(Abs(sqrt(-I))))), S.Integers)
    assert s.intersect(S.Reals) == imageset(Lambda(n, 2*n*pi - pi/4), S.Integers)
Esempio n. 15
0
def test_issue_8514():
    a, b, c, = symbols('a b c', positive=True, finite=True)
    t = symbols('t', positive=True)
    ft = simplify(inverse_laplace_transform(1 / (a * s**2 + b * s + c), s, t))
    assert ft.rewrite(atan2) == (
        (exp(t * (exp(I * atan2(0, -4 * a * c + b**2) / 2) - exp(-I * atan2(
            0, -4 * a * c + b**2) / 2)) * sqrt(Abs(4 * a * c - b**2)) /
             (4 * a)) * exp(t * cos(atan2(0, -4 * a * c + b**2) / 2) *
                            sqrt(Abs(4 * a * c - b**2)) / a) +
         I * sin(t * sin(atan2(0, -4 * a * c + b**2) / 2) *
                 sqrt(Abs(4 * a * c - b**2)) /
                 (2 * a)) - cos(t * sin(atan2(0, -4 * a * c + b**2) / 2) *
                                sqrt(Abs(4 * a * c - b**2)) / (2 * a))) *
        exp(-t * (b + cos(atan2(0, -4 * a * c + b**2) / 2) *
                  sqrt(Abs(4 * a * c - b**2))) /
            (2 * a)) / sqrt(-4 * a * c + b**2))
Esempio n. 16
0
def test_geometric_sums():
    assert summation(pi**n, (n, 0, b)) == (1 - pi**(b + 1)) / (1 - pi)
    assert summation(2 * 3**n, (n, 0, b)) == 3**(b + 1) - 1
    assert summation(Rational(1, 2)**n, (n, 1, oo)) == 1
    assert summation(2**n, (n, 0, b)) == 2**(b + 1) - 1
    assert summation(2**n, (n, 1, oo)) == oo
    assert summation(2**(-n), (n, 1, oo)) == 1
    assert summation(3**(-n), (n, 4, oo)) == Rational(1, 54)
    assert summation(2**(-4 * n + 3), (n, 1, oo)) == Rational(8, 15)
    assert summation(2**(n + 1), (n, 1, b)).expand() == 4 * (2**b - 1)

    # issue sympy/sympy#6664:
    assert summation(x**n, (n, 0, oo)) == \
        Piecewise((1/(-x + 1), Abs(x) < 1), (Sum(x**n, (n, 0, oo)), True))

    assert summation(-2**n, (n, 0, oo)) == -oo
    assert summation(I**n, (n, 0, oo)) == Sum(I**n, (n, 0, oo))

    # issue sympy/sympy#6802:
    assert summation((-1)**(2 * x + 2), (x, 0, n)) == n + 1
    assert summation((-2)**(2 * x + 2),
                     (x, 0, n)) == 4 * 4**(n + 1) / 3 - Rational(4, 3)
    assert summation((-1)**x, (x, 0, n)) == -(-1)**(n + 1) / 2 + Rational(1, 2)
    assert summation(y**x, (x, a, b)) == \
        Piecewise((-a + b + 1, Eq(y, 1)), ((y**a - y**(b + 1))/(-y + 1), True))
    assert summation((-2)**(y*x + 2), (x, 0, n)) == \
        4*Piecewise((n + 1, Eq((-2)**y, 1)),
                    ((-(-2)**(y*(n + 1)) + 1)/(-(-2)**y + 1), True))

    # issue sympy/sympy#8251:
    assert summation((1 / (n + 1)**2) * n**2, (n, 0, oo)) == oo

    # issue sympy/sympy#9908:
    assert Sum(1 / (n**3 - 1),
               (n, -oo, -2)).doit() == summation(1 / (n**3 - 1), (n, -oo, -2))
Esempio n. 17
0
def test_Abs_rewrite():
    x = Symbol('x', extended_real=True)
    a = Abs(x).rewrite(Heaviside).expand()
    assert a == x*Heaviside(x) - x*Heaviside(-x)
    for i in [-2, -1, 0, 1, 2]:
        assert a.subs(x, i) == abs(i)
    y = Symbol('y')
    assert Abs(y).rewrite(Heaviside) == Abs(y)

    x, y = Symbol('x', extended_real=True), Symbol('y')
    assert Abs(x).rewrite(Piecewise) == Piecewise((x, x >= 0), (-x, True))
    assert Abs(y).rewrite(Piecewise) == Abs(y)
    assert Abs(y).rewrite(sign) == y/sign(y)
Esempio n. 18
0
def test_sympyissue_4884():
    assert integrate(sqrt(x)*(1 + x)) == \
        Piecewise(
            (2*sqrt(x)*(x + 1)**2/5 - 2*sqrt(x)*(x + 1)/15 - 4*sqrt(x)/15,
             Abs(x + 1) > 1),
            (2*I*sqrt(-x)*(x + 1)**2/5 - 2*I*sqrt(-x)*(x + 1)/15 -
             4*I*sqrt(-x)/15, True))
    assert integrate(x**x * (1 + log(x))) == x**x
Esempio n. 19
0
def test_sympyissue_8368():
    assert integrate(exp(-s*x)*cosh(x), (x, 0, oo)) == \
        Piecewise((pi*Piecewise((-s/(pi*(-s**2 + 1)), Abs(s**2) < 1),
                                (1/(pi*s*(1 - 1/s**2)), Abs(s**(-2)) < 1), (meijerg(((Rational(1, 2),), (0, 0)),
                                                                                    ((0, Rational(1, 2)), (0,)), polar_lift(s)**2), True)),
                   And(Abs(periodic_argument(polar_lift(s)**2, oo)) < pi, Ne(s**2, 1),
                       cos(Abs(periodic_argument(polar_lift(s)**2, oo))/2)*sqrt(Abs(s**2)) -
                       1 > 0)), (Integral(exp(-s*x)*cosh(x), (x, 0, oo)), True))
    assert integrate(exp(-s*x)*sinh(x), (x, 0, oo)) == \
        Piecewise((pi*Piecewise((2/(pi*(2*s**2 - 2)), Abs(s**2) < 1),
                                (-2/(pi*s**2*(-2 + 2/s**2)), Abs(s**(-2)) < 1),
                                (meijerg(((0,), (Rational(-1, 2), Rational(1, 2))),
                                         ((0, Rational(1, 2)), (Rational(-1, 2),)),
                                         polar_lift(s)**2), True)),
                   And(Abs(periodic_argument(polar_lift(s)**2, oo)) < pi, Ne(s**2, 1),
                       cos(Abs(periodic_argument(polar_lift(s)**2, oo))/2)*sqrt(Abs(s**2)) - 1 > 0)),
                  (Integral(E**(-s*x)*sinh(x), (x, 0, oo)), True))
Esempio n. 20
0
def test_sympyissue_4492():
    assert simplify(integrate(x**2 * sqrt(5 - x**2), x)) == Piecewise(
        (I * (2 * x**5 - 15 * x**3 + 25 * x -
              25 * sqrt(x**2 - 5) * acosh(sqrt(5) * x / 5)) /
         (8 * sqrt(x**2 - 5)), 1 < Abs(x**2) / 5),
        ((-2 * x**5 + 15 * x**3 - 25 * x +
          25 * sqrt(-x**2 + 5) * asin(sqrt(5) * x / 5)) /
         (8 * sqrt(-x**2 + 5)), True))
Esempio n. 21
0
def test_builtins():
    cases = [('abs(x)', 'Abs(x)'), ('max(x, y)', 'Max(x, y)'),
             ('min(x, y)', 'Min(x, y)'), ('pow(x, y)', 'Pow(x, y)')]
    for built_in_func_call, sympy_func_call in cases:
        assert parse_expr(built_in_func_call) == parse_expr(sympy_func_call)
    assert parse_expr('pow(38, -1)') == Rational(1, 38)
    # issue sympy/sympy#22322
    assert parse_expr('abs(-42)', evaluate=False) == Abs(-42, evaluate=False)
Esempio n. 22
0
def test_numpy_matmul():
    xmat = Matrix([[x, y], [z, 1+z]])
    ymat = Matrix([[x**2], [Abs(x)]])
    mat_func = lambdify((x, y, z), xmat*ymat, modules="numpy")
    numpy.testing.assert_array_equal(mat_func(0.5, 3, 4), numpy.array([[1.625], [3.5]]))
    numpy.testing.assert_array_equal(mat_func(-0.5, 3, 4), numpy.array([[1.375], [3.5]]))
    # Multiple matrices chained together in multiplication
    f = lambdify((x, y, z), xmat*xmat*xmat, modules="numpy")
    numpy.testing.assert_array_equal(f(0.5, 3, 4), numpy.array([[72.125, 119.25],
                                                                [159, 251]]))
Esempio n. 23
0
def test_sympyissue_2787():
    n, k = symbols('n k', positive=True, integer=True)
    p = symbols('p', positive=True)
    binomial_dist = binomial(n, k) * p**k * (1 - p)**(n - k)
    s = Sum(binomial_dist * k, (k, 0, n))
    res = s.doit().simplify()
    assert res == Piecewise(
        (n * p, And(Or(-n + 1 < 0, Ne(p / (p - 1), 1)), p / Abs(p - 1) <= 1)),
        (Sum(k * p**k * (-p + 1)**(-k) * (-p + 1)**n * binomial(n, k),
             (k, 0, n)), True))
Esempio n. 24
0
def test_derivatives_sympyissue_4757():
    x = Symbol('x', extended_real=True)
    y = Symbol('y', imaginary=True)
    f = Function('f')
    assert re(f(x)).diff(x) == re(f(x).diff(x))
    assert im(f(x)).diff(x) == im(f(x).diff(x))
    assert re(f(y)).diff(y) == -I * im(f(y).diff(y))
    assert im(f(y)).diff(y) == -I * re(f(y).diff(y))
    assert re(f(z)).diff(z) == Derivative(re(f(z)), z)
    assert im(f(z)).diff(z) == Derivative(im(f(z)), z)
    assert Abs(f(x)).diff(x).subs({
        f(x): 1 + I * x
    }).doit() == x / sqrt(1 + x**2)
    assert arg(f(x)).diff(x).subs({
        f(x): 1 + I * x**2
    }).doit() == 2 * x / (1 + x**4)
    assert Abs(f(y)).diff(y).subs({f(y): 1 + y}).doit() == -y / sqrt(1 - y**2)
    assert arg(f(y)).diff(y).subs({
        f(y): I + y**2
    }).doit() == 2 * y / (1 + y**4)
Esempio n. 25
0
def test_python_functions():
    # Simple
    assert python((2 * x + exp(x))) in "x = Symbol('x')\ne = E**x + 2*x"
    assert python(sqrt(2)) == 'e = sqrt(2)'
    assert python(cbrt(2)) == 'e = 2**Rational(1, 3)'
    assert python(sqrt(2 + pi)) == 'e = sqrt(2 + pi)'
    assert python(cbrt(2 + pi)) == 'e = (2 + pi)**Rational(1, 3)'
    assert python(root(2, 4)) == 'e = 2**Rational(1, 4)'
    assert python(Abs(x)) == "x = Symbol('x')\ne = Abs(x)"
    assert python(Abs(x / (x**2 + 1))) in [
        "x = Symbol('x')\ne = Abs(x/(1 + x**2))",
        "x = Symbol('x')\ne = Abs(x/(x**2 + 1))"
    ]

    # Univariate/Multivariate functions
    f = Function('f')
    assert python(f(x)) == "x = Symbol('x')\nf = Function('f')\ne = f(x)"
    assert python(
        f(x, y)
    ) == "x = Symbol('x')\ny = Symbol('y')\nf = Function('f')\ne = f(x, y)"
    assert python(f(x / (y + 1), y)) in [
        "x = Symbol('x')\ny = Symbol('y')\nf = Function('f')\ne = f(x/(1 + y), y)",
        "x = Symbol('x')\ny = Symbol('y')\nf = Function('f')\ne = f(x/(y + 1), y)"
    ]

    # Nesting of square roots
    assert python(sqrt((sqrt(x + 1)) + 1)) in [
        "x = Symbol('x')\ne = sqrt(1 + sqrt(1 + x))",
        "x = Symbol('x')\ne = sqrt(sqrt(x + 1) + 1)"
    ]

    # Nesting of powers
    assert python(cbrt(cbrt(x + 1) + 1)) in [
        "x = Symbol('x')\ne = (1 + (1 + x)**Rational(1, 3))**Rational(1, 3)",
        "x = Symbol('x')\ne = ((x + 1)**Rational(1, 3) + 1)**Rational(1, 3)"
    ]

    # Function powers
    assert python(sin(x)**2) == "x = Symbol('x')\ne = sin(x)**2"
Esempio n. 26
0
def test_lerchphi():
    from diofant import combsimp, exp_polar, polylog, log, lerchphi
    assert hyperexpand(hyper([1, a], [a + 1], z) / a) == lerchphi(z, 1, a)
    assert hyperexpand(hyper([1, a, a], [a + 1, a + 1], z) / a**2) == lerchphi(
        z, 2, a)
    assert hyperexpand(hyper([1, a, a, a], [a + 1, a + 1, a + 1], z)/a**3) == \
        lerchphi(z, 3, a)
    assert hyperexpand(hyper([1] + [a]*10, [a + 1]*10, z)/a**10) == \
        lerchphi(z, 10, a)
    assert combsimp(
        hyperexpand(meijerg([0, 1 - a], [], [0], [-a],
                            exp_polar(-I * pi) * z))) == lerchphi(z, 1, a)
    assert combsimp(
        hyperexpand(
            meijerg([0, 1 - a, 1 - a], [], [0], [-a, -a],
                    exp_polar(-I * pi) * z))) == lerchphi(z, 2, a)
    assert combsimp(
        hyperexpand(
            meijerg([0, 1 - a, 1 - a, 1 - a], [], [0], [-a, -a, -a],
                    exp_polar(-I * pi) * z))) == lerchphi(z, 3, a)

    assert hyperexpand(z * hyper([1, 1], [2], z)) == -log(1 + -z)
    assert hyperexpand(z * hyper([1, 1, 1], [2, 2], z)) == polylog(2, z)
    assert hyperexpand(z * hyper([1, 1, 1, 1], [2, 2, 2], z)) == polylog(3, z)

    assert hyperexpand(hyper([1, a, 1 + Rational(1, 2)], [a + 1, Rational(1, 2)], z)) == \
        -2*a/(z - 1) + (-2*a**2 + a)*lerchphi(z, 1, a)

    # Now numerical tests. These make sure reductions etc are carried out
    # correctly

    # a rational function (polylog at negative integer order)
    assert can_do([2, 2, 2], [1, 1])

    # NOTE these contain log(1-x) etc ... better make sure we have |z| < 1
    # reduction of order for polylog
    assert can_do([1, 1, 1, b + 5], [2, 2, b], div=10)

    # reduction of order for lerchphi
    # XXX lerchphi in mpmath is flaky
    assert can_do([1, a, a, a, b + 5], [a + 1, a + 1, a + 1, b],
                  numerical=False)

    # test a bug
    from diofant import Abs
    assert hyperexpand(hyper([Rational(1, 2), Rational(1, 2), Rational(1, 2), 1],
                             [Rational(3, 2), Rational(3, 2), Rational(3, 2)], Rational(1, 4))) == \
        Abs(-polylog(3, exp_polar(I*pi)/2) + polylog(3, Rational(1, 2)))
Esempio n. 27
0
def test_piecewise_fold_piecewise_in_cond():
    p1 = Piecewise((cos(x), x < 0), (0, True))
    p2 = Piecewise((0, Eq(p1, 0)), (p1 / Abs(p1), True))
    p3 = piecewise_fold(p2)
    assert (p2.subs(x, -pi / 2) == 0.0)
    assert (p2.subs(x, 1) == 0.0)
    assert (p2.subs(x, -pi / 4) == 1.0)
    p4 = Piecewise((0, Eq(p1, 0)), (1, True))
    assert (piecewise_fold(p4) == Piecewise(
        (0, Or(And(Eq(cos(x), 0), x < 0), Not(x < 0))), (1, True)))

    r1 = 1 < Piecewise((1, x < 1), (3, True))
    assert (piecewise_fold(r1) == Not(x < 1))

    p5 = Piecewise((1, x < 0), (3, True))
    p6 = Piecewise((1, x < 1), (3, True))
    p7 = piecewise_fold(Piecewise((1, p5 < p6), (0, True)))
    assert (Piecewise((1, And(Not(x < 1), x < 0)), (0, True)))
Esempio n. 28
0
def test_maxima_functions():
    assert parse_maxima('expand( (x+1)^2)') == x**2 + 2*x + 1
    assert parse_maxima('factor( x**2 + 2*x + 1)') == (x + 1)**2
    assert parse_maxima('2*cos(x)^2 + sin(x)^2') == 2*cos(x)**2 + sin(x)**2
    assert parse_maxima('trigexpand(sin(2*x)+cos(2*x))') == \
        -1 + 2*cos(x)**2 + 2*cos(x)*sin(x)
    assert parse_maxima('solve(x^2-4,x)') == [{x: -2}, {x: 2}]
    assert parse_maxima('limit((1+1/x)^x,x,inf)') == E
    assert parse_maxima('limit(sqrt(-x)/x,x,0,minus)') == -oo
    assert parse_maxima('diff(x^x, x)') == x**x*(1 + log(x))
    assert parse_maxima('sum(k, k, 1, n)',
                        name_dict={'k': Symbol('k', integer=True),
                                   'n': n}) == (n**2 + n)/2
    assert parse_maxima('product(k, k, 1, n)',
                        name_dict={'k': Symbol('k', integer=True),
                                   'n': n}) == factorial(n)
    assert parse_maxima('ratsimp((x^2-1)/(x+1))') == x - 1
    assert Abs( parse_maxima(
        'float(sec(%pi/3) + csc(%pi/3))') - 3.154700538379252) < 10**(-5)
Esempio n. 29
0
def l2_norm(f, lim):
    """
    Calculates L2 norm of the function "f", over the domain lim=(x, a, b).

    x ...... the independent variable in f over which to integrate
    a, b ... the limits of the interval

    Examples
    ========

    >>> from diofant import Symbol
    >>> from gibbs_phenomenon import l2_norm
    >>> x = Symbol('x', extended_real=True)
    >>> l2_norm(1, (x, -1, 1))
    sqrt(2)
    >>> l2_norm(x, (x, -1, 1))
    sqrt(6)/3

    """
    return sqrt(integrate(Abs(f)**2, lim))
Esempio n. 30
0
def test_Abs_real():
    # test some properties of abs that only apply
    # to real numbers
    x = Symbol('x', complex=True)
    assert sqrt(x**2) != Abs(x)
    assert Abs(x**2) != x**2

    x = Symbol('x', extended_real=True)
    assert sqrt(x**2) == Abs(x)
    assert Abs(x**2) == x**2

    # if the symbol is zero, the following will still apply
    nn = Symbol('nn', nonnegative=True, extended_real=True)
    np = Symbol('np', nonpositive=True, extended_real=True)
    assert Abs(nn) == nn
    assert Abs(np) == -np
Esempio n. 31
0
def evalf_log(expr, prec, options):
    from diofant import Abs, Add, log

    if len(expr.args) > 1:
        expr = expr.doit()
        return evalf(expr, prec, options)

    arg = expr.args[0]
    workprec = prec + 10
    xre, xim, xacc, _ = evalf(arg, workprec, options)

    if xim:
        # XXX: use get_abs etc instead
        re = evalf_log(log(Abs(arg, evaluate=False), evaluate=False), prec,
                       options)
        im = mpf_atan2(xim, xre or fzero, prec)
        return re[0], im, re[2], prec

    imaginary_term = (mpf_cmp(xre, fzero) < 0)

    re = mpf_log(mpf_abs(xre), prec, rnd)
    size = fastlog(re)
    if prec - size > workprec:
        # We actually need to compute 1+x accurately, not x
        arg = Add(S.NegativeOne, arg, evaluate=False)
        xre, xim, _, _ = evalf_add(arg, prec, options)
        prec2 = workprec - fastlog(xre)
        # xre is now x - 1 so we add 1 back here to calculate x
        re = mpf_log(mpf_abs(mpf_add(xre, fone, prec2)), prec, rnd)

    re_acc = prec

    if imaginary_term:
        return re, mpf_pi(prec), re_acc, prec
    else:
        return re, None, re_acc, None