Esempio n. 1
0
    def _encode_board(self, board_state, name, reuse=None):
        """ Encodes a board state or prev orders state
            :param board_state: The board state / prev orders state to encode - (batch, NB_NODES, initial_features)
            :param name: The name to use for the encoding
            :param reuse: Whether to reuse or not the weights from another encoding operation
            :return: The encoded board state / prev_orders state
        """
        from diplomacy_research.utils.tensorflow import tf
        from diplomacy_research.models.layers.graph_convolution import film_gcn_res_block, preprocess_adjacency

        # Quick function to retrieve hparams and placeholders and function shorthands
        hps = lambda hparam_name: self.hparams[hparam_name]
        pholder = lambda placeholder_name: self.placeholders[placeholder_name]
        relu = tf.nn.relu

        # Getting film gammas and betas
        film_gammas = self.outputs['_%s_film_gammas' % name]
        film_betas = self.outputs['_%s_film_betas' % name]

        # Computing norm adjacency
        norm_adjacency = preprocess_adjacency(get_adjacency_matrix())
        norm_adjacency = tf.tile(tf.expand_dims(norm_adjacency, axis=0),
                                 [tf.shape(board_state)[0], 1, 1])

        # Building scope
        scope = tf.VariableScope(name='policy/%s' % name, reuse=reuse)
        with tf.variable_scope(scope):

            # Adding noise to break symmetry
            board_state = board_state + tf.random_normal(tf.shape(board_state),
                                                         stddev=0.01)
            graph_conv = tf.layers.Dense(units=hps('gcn_size'),
                                         activation=relu)(board_state)

            # First and intermediate layers
            for layer_idx in range(hps('nb_graph_conv') - 1):
                graph_conv = film_gcn_res_block(
                    inputs=graph_conv,  # (b, NB_NODES, gcn_size)
                    gamma=film_gammas[layer_idx],
                    beta=film_betas[layer_idx],
                    gcn_out_dim=hps('gcn_size'),
                    norm_adjacency=norm_adjacency,
                    is_training=pholder('is_training'),
                    residual=True)

            # Last layer
            graph_conv = film_gcn_res_block(
                inputs=graph_conv,  # (b, NB_NODES, final_size)
                gamma=film_gammas[-1],
                beta=film_betas[-1],
                gcn_out_dim=hps('attn_size') // 2,
                norm_adjacency=norm_adjacency,
                is_training=pholder('is_training'),
                residual=False)

        # Returning
        return graph_conv
Esempio n. 2
0
    def _encode_board(self, board_state, name, reuse=None):
        """ Encodes a board state or prev orders state
            :param board_state: The board state / prev orders state to encode - (batch, NB_NODES, initial_features)
            :param name: The name to use for the encoding
            :param reuse: Whether to reuse or not the weights from another encoding operation
            :return: The encoded board state / prev_orders state
        """
        from diplomacy_research.utils.tensorflow import tf
        from diplomacy_research.models.layers.graph_convolution import GraphConvolution, preprocess_adjacency
        from diplomacy_research.utils.tensorflow import batch_norm

        # Quick function to retrieve hparams and placeholders and function shorthands
        hps = lambda hparam_name: self.hparams[hparam_name]
        pholder = lambda placeholder_name: self.placeholders[placeholder_name]
        relu = tf.nn.relu

        # Computing norm adjacency
        norm_adjacency = preprocess_adjacency(get_adjacency_matrix())
        norm_adjacency = tf.tile(tf.expand_dims(norm_adjacency, axis=0), [tf.shape(board_state)[0], 1, 1])

        # Building scope
        scope = tf.VariableScope(name='policy/%s' % name, reuse=reuse)
        with tf.variable_scope(scope):

            # Adding noise to break symmetry
            board_state = board_state + tf.random_normal(tf.shape(board_state), stddev=0.01)
            graph_conv = board_state

            # First Layer
            graph_conv = GraphConvolution(input_dim=graph_conv.shape[-1].value,             # (b, NB_NODES, gcn_size)
                                          output_dim=hps('gcn_size'),
                                          norm_adjacency=norm_adjacency,
                                          activation_fn=relu,
                                          bias=True)(graph_conv)

            # Intermediate Layers
            for _ in range(1, hps('nb_graph_conv') - 1):
                graph_conv = GraphConvolution(input_dim=hps('gcn_size'),                    # (b, NB_NODES, gcn_size)
                                              output_dim=hps('gcn_size'),
                                              norm_adjacency=norm_adjacency,
                                              activation_fn=relu,
                                              bias=True)(graph_conv)
                graph_conv = batch_norm(graph_conv, is_training=pholder('is_training'), fused=True)

            # Final Layer
            graph_conv = GraphConvolution(input_dim=hps('gcn_size'),                        # (b, NB_NODES, attn_size)
                                          output_dim=hps('attn_size'),
                                          norm_adjacency=norm_adjacency,
                                          activation_fn=None,
                                          bias=True)(graph_conv)

        # Returning
        return graph_conv
Esempio n. 3
0
    def _encode_board(self, board_state, name, reuse=None):
        """ Encodes a board state or prev orders state
            :param board_state: The board state / prev orders state to encode - (batch, NB_NODES, initial_features)
            :param name: The name to use for the encoding
            :param reuse: Whether to reuse or not the weights from another encoding operation
            :return: The encoded board state / prev_orders state
        """
        from diplomacy_research.utils.tensorflow import tf
        from diplomacy_research.models.layers.graph_convolution import GraphConvolution, preprocess_adjacency

        # Quick function to retrieve hparams and placeholders and function shorthands
        hps = lambda hparam_name: self.hparams[hparam_name]
        relu = tf.nn.relu

        # Computing norm adjacency
        norm_adjacency = preprocess_adjacency(get_adjacency_matrix())
        norm_adjacency = tf.tile(tf.expand_dims(norm_adjacency, axis=0), [tf.shape(board_state)[0], 1, 1])

        # Building scope
        scope = tf.VariableScope(name='policy/%s' % name, reuse=reuse)
        with tf.variable_scope(scope):
            batch_size = tf.shape(board_state)[0]

            # Adding noise to break symmetry
            board_state = board_state + tf.random_normal(tf.shape(board_state), stddev=0.01)

            # Projecting (if needed) to 'gcn_size'
            if board_state.shape[-1].value == NB_FEATURES:
                with tf.variable_scope('proj', reuse=tf.AUTO_REUSE):
                    proj_w = tf.get_variable('W', shape=[1, NB_FEATURES, hps('gcn_size')], dtype=tf.float32)
                graph_conv = relu(tf.matmul(board_state, tf.tile(proj_w, [batch_size, 1, 1])))
            else:
                graph_conv = board_state

            # First and intermediate layers
            for _ in range(hps('nb_graph_conv') - 1):
                graph_conv = GraphConvolution(input_dim=hps('gcn_size'),                    # (b, NB_NODES, gcn_size)
                                              output_dim=hps('gcn_size'),
                                              norm_adjacency=norm_adjacency,
                                              activation_fn=relu,
                                              residual=True,
                                              bias=True)(graph_conv)

            # Last Layer
            graph_conv = GraphConvolution(input_dim=hps('gcn_size'),                        # (b, NB_NODES, final_size)
                                          output_dim=hps('attn_size') // 2,
                                          norm_adjacency=norm_adjacency,
                                          activation_fn=relu,
                                          residual=False,
                                          bias=True)(graph_conv)

        # Returning
        return graph_conv
Esempio n. 4
0
    def _build_policy_final(self):
        """ Builds the policy model (final step) """
        from diplomacy_research.utils.tensorflow import tf
        from diplomacy_research.models.layers.attention import AttentionWrapper, BahdanauAttention
        from diplomacy_research.models.layers.beam_decoder import DiverseBeamSearchDecoder
        from diplomacy_research.models.layers.decoder import CandidateBasicDecoder
        from diplomacy_research.models.layers.dropout import SeededDropoutWrapper
        from diplomacy_research.models.layers.dynamic_decode import dynamic_decode
        from diplomacy_research.models.policy.order_based.helper import CustomHelper, CustomBeamHelper
        from diplomacy_research.utils.tensorflow import cross_entropy, sequence_loss, to_int32, to_float, get_tile_beam

        # Quick function to retrieve hparams and placeholders and function shorthands
        hps = lambda hparam_name: self.hparams[hparam_name]
        pholder = lambda placeholder_name: self.placeholders[placeholder_name]

        # Training loop
        with tf.variable_scope('policy', reuse=tf.AUTO_REUSE):
            with tf.device(self.cluster_config.worker_device if self.cluster_config else None):

                # Features
                player_seeds = self.features['player_seed']                 # tf.int32 - (b,)
                temperature = self.features['temperature']                  # tf,flt32 - (b,)
                dropout_rates = self.features['dropout_rate']               # tf.flt32 - (b,)

                # Placeholders
                stop_gradient_all = pholder('stop_gradient_all')

                # Outputs (from initial steps)
                batch_size = self.outputs['batch_size']
                decoder_inputs = self.outputs['decoder_inputs']
                decoder_type = self.outputs['decoder_type']
                raw_decoder_lengths = self.outputs['raw_decoder_lengths']
                decoder_lengths = self.outputs['decoder_lengths']
                board_state_conv = self.outputs['board_state_conv']
                order_embedding = self.outputs['order_embedding']
                candidate_embedding = self.outputs['candidate_embedding']
                candidates = self.outputs['candidates']
                max_candidate_length = self.outputs['max_candidate_length']

                # --- Decoding ---
                with tf.variable_scope('decoder_scope', reuse=tf.AUTO_REUSE):
                    lstm_cell = tf.contrib.rnn.LSTMBlockCell(hps('lstm_size'))

                    # ======== Regular Decoding ========
                    # Applying dropout to input + attention and to output layer
                    decoder_cell = SeededDropoutWrapper(cell=lstm_cell,
                                                        seeds=player_seeds,
                                                        input_keep_probs=1. - dropout_rates,
                                                        output_keep_probs=1. - dropout_rates,
                                                        variational_recurrent=hps('use_v_dropout'),
                                                        input_size=hps('order_emb_size') + hps('attn_size'),
                                                        dtype=tf.float32)

                    # apply attention over location
                    # curr_state [batch, NB_NODES, attn_size]
                    attention_scope = tf.VariableScope(name='policy/decoder_scope/Attention', reuse=tf.AUTO_REUSE)
                    attention_mechanism = BahdanauAttention(num_units=hps('attn_size'),
                                                            memory=board_state_conv,
                                                            normalize=True,
                                                            name_or_scope=attention_scope)
                    decoder_cell = AttentionWrapper(cell=decoder_cell,
                                                    attention_mechanism=attention_mechanism,
                                                    output_attention=False,
                                                    name_or_scope=attention_scope)

                    # Setting initial state
                    decoder_init_state = decoder_cell.zero_state(batch_size, tf.float32)
                    decoder_init_state = decoder_init_state.clone(attention=tf.reduce_mean(board_state_conv, axis=1))

                    # ---- Helper ----
                    helper = CustomHelper(decoder_type=decoder_type,
                                          inputs=decoder_inputs[:, :-1],
                                          order_embedding=order_embedding,
                                          candidate_embedding=candidate_embedding,
                                          sequence_length=decoder_lengths,
                                          candidates=candidates,
                                          time_major=False,
                                          softmax_temperature=temperature)

                    # ---- Decoder ----
                    sequence_mask = tf.sequence_mask(raw_decoder_lengths,
                                                     maxlen=tf.reduce_max(decoder_lengths),
                                                     dtype=tf.float32)
                    maximum_iterations = NB_SUPPLY_CENTERS
                    model_decoder = CandidateBasicDecoder(cell=decoder_cell,
                                                          helper=helper,
                                                          initial_state=decoder_init_state,
                                                          max_candidate_length=max_candidate_length,
                                                          extract_state=True)
                    training_results, _, _ = dynamic_decode(decoder=model_decoder,
                                                            output_time_major=False,
                                                            maximum_iterations=maximum_iterations,
                                                            swap_memory=hps('swap_memory'))
                    global_vars_after_decoder = set(tf.global_variables())

                    # ======== Beam Search Decoding ========
                    tile_beam = get_tile_beam(hps('beam_width'))

                    # Applying dropout to input + attention and to output layer
                    decoder_cell = SeededDropoutWrapper(cell=lstm_cell,
                                                        seeds=tile_beam(player_seeds),
                                                        input_keep_probs=tile_beam(1. - dropout_rates),
                                                        output_keep_probs=tile_beam(1. - dropout_rates),
                                                        variational_recurrent=hps('use_v_dropout'),
                                                        input_size=hps('order_emb_size') + hps('attn_size'),
                                                        dtype=tf.float32)

                    # apply attention over location
                    # curr_state [batch, NB_NODES, attn_size]
                    attention_mechanism = BahdanauAttention(num_units=hps('attn_size'),
                                                            memory=tile_beam(board_state_conv),
                                                            normalize=True,
                                                            name_or_scope=attention_scope)
                    decoder_cell = AttentionWrapper(cell=decoder_cell,
                                                    attention_mechanism=attention_mechanism,
                                                    output_attention=False,
                                                    name_or_scope=attention_scope)

                    # Setting initial state
                    decoder_init_state = decoder_cell.zero_state(batch_size * hps('beam_width'), tf.float32)
                    decoder_init_state = decoder_init_state.clone(attention=tf.reduce_mean(tile_beam(board_state_conv),
                                                                                           axis=1))

                    # ---- Beam Helper and Decoder ----
                    beam_helper = CustomBeamHelper(cell=decoder_cell,
                                                   order_embedding=order_embedding,
                                                   candidate_embedding=candidate_embedding,
                                                   candidates=candidates,
                                                   sequence_length=decoder_lengths,
                                                   initial_state=decoder_init_state,
                                                   beam_width=hps('beam_width'))
                    beam_decoder = DiverseBeamSearchDecoder(beam_helper=beam_helper,
                                                            sequence_length=decoder_lengths,
                                                            nb_groups=hps('beam_groups'))
                    beam_results, beam_state, _ = dynamic_decode(decoder=beam_decoder,
                                                                 output_time_major=False,
                                                                 maximum_iterations=maximum_iterations,
                                                                 swap_memory=hps('swap_memory'))

                    # Making sure we haven't created new global variables
                    assert not set(tf.global_variables()) - global_vars_after_decoder, 'New global vars were created'

                    # Processing results
                    candidate_logits = training_results.rnn_output                  # (b, dec_len, max_cand_len)
                    logits_length = tf.shape(candidate_logits)[1]                   # dec_len
                    decoder_target = decoder_inputs[:, 1:1 + logits_length]

                    # Selected tokens are the token that was actually fed at the next position
                    sample_mask = to_float(tf.math.equal(training_results.sample_id, -1))
                    selected_tokens = to_int32(
                        sequence_mask * (sample_mask * to_float(decoder_target)
                                         + (1. - sample_mask) * to_float(training_results.sample_id)))

                    # Computing ArgMax tokens
                    argmax_id = to_int32(tf.argmax(candidate_logits, axis=-1))
                    max_nb_candidate = tf.shape(candidate_logits)[2]
                    candidate_ids = \
                        tf.reduce_sum(tf.one_hot(argmax_id, max_nb_candidate, dtype=tf.int32) * candidates, axis=-1)
                    argmax_tokens = to_int32(to_float(candidate_ids) * sequence_mask)

                    # Extracting the position of the target candidate
                    tokens_labels = tf.argmax(to_int32(tf.math.equal(selected_tokens[:, :, None], candidates)), -1)
                    target_labels = tf.argmax(to_int32(tf.math.equal(decoder_target[:, :, None], candidates)), -1)

                    # Log Probs
                    log_probs = -1. * cross_entropy(logits=candidate_logits, labels=tokens_labels) * sequence_mask

                # Computing policy loss
                with tf.variable_scope('policy_loss'):
                    policy_loss = sequence_loss(logits=candidate_logits,
                                                targets=target_labels,
                                                weights=sequence_mask,
                                                average_across_batch=True,
                                                average_across_timesteps=True)
                    policy_loss = tf.cond(stop_gradient_all,
                                          lambda: tf.stop_gradient(policy_loss),                                        # pylint: disable=cell-var-from-loop
                                          lambda: policy_loss)                                                          # pylint: disable=cell-var-from-loop

        # Building output tags
        outputs = {'tag/policy/order_based/v001_markovian_no_film': True,
                   'targets': decoder_inputs[:, 1:],
                   'selected_tokens': selected_tokens,
                   'argmax_tokens': argmax_tokens,
                   'logits': candidate_logits,
                   'log_probs': log_probs,
                   'beam_tokens': tf.transpose(beam_results.predicted_ids, perm=[0, 2, 1]),     # [batch, beam, steps]
                   'beam_log_probs': beam_state.log_probs,
                   'rnn_states': training_results.rnn_state,
                   'policy_loss': policy_loss,
                   'draw_prob': self.outputs.get('draw_prob', tf.zeros_like(self.features['draw_target'])),
                   'learning_rate': self.learning_rate}

        # Adding features, placeholders and outputs to graph
        self.add_meta_information(outputs)
Esempio n. 5
0
    def _build_policy_final(self):
        """ Builds the policy model (final step) """
        from diplomacy_research.utils.tensorflow import tf
        from diplomacy_research.models.layers.attention import StaticAttentionWrapper
        from diplomacy_research.models.layers.beam_decoder import DiverseBeamSearchDecoder
        from diplomacy_research.models.layers.decoder import CandidateBasicDecoder
        from diplomacy_research.models.layers.dropout import SeededDropoutWrapper
        from diplomacy_research.models.layers.dynamic_decode import dynamic_decode
        from diplomacy_research.models.layers.initializers import uniform
        from diplomacy_research.models.layers.transformer import TransformerCell
        from diplomacy_research.models.layers.wrappers import IdentityCell
        from diplomacy_research.models.policy.order_based.helper import CustomHelper, CustomBeamHelper
        from diplomacy_research.utils.tensorflow import cross_entropy, sequence_loss, to_int32, to_float, get_tile_beam

        # Quick function to retrieve hparams and placeholders and function shorthands
        hps = lambda hparam_name: self.hparams[hparam_name]
        pholder = lambda placeholder_name: self.placeholders[placeholder_name]

        # Training loop
        with tf.variable_scope('policy', reuse=tf.AUTO_REUSE):
            with tf.device(self.cluster_config.worker_device if self.
                           cluster_config else None):

                # Features
                player_seeds = self.features['player_seed']  # tf.int32 - (b,)
                temperature = self.features['temperature']  # tf,flt32 - (b,)
                dropout_rates = self.features[
                    'dropout_rate']  # tf.flt32 - (b,)

                # Placeholders
                stop_gradient_all = pholder('stop_gradient_all')

                # Outputs (from initial steps)
                batch_size = self.outputs['batch_size']
                board_alignments = self.outputs['board_alignments']
                decoder_inputs = self.outputs['decoder_inputs']
                decoder_type = self.outputs['decoder_type']
                raw_decoder_lengths = self.outputs['raw_decoder_lengths']
                decoder_lengths = self.outputs['decoder_lengths']
                board_state_conv = self.outputs['board_state_conv']
                order_embedding = self.outputs['order_embedding']
                candidate_embedding = self.outputs['candidate_embedding']
                candidates = self.outputs['candidates']
                max_candidate_length = self.outputs['max_candidate_length']

                # Creating a smaller position embedding if it's not present in the outputs
                # Embeddings needs to be cached locally on the worker, otherwise TF can't compute their gradients
                with tf.variable_scope('position_embedding_scope'):
                    caching_device = self.cluster_config.caching_device if self.cluster_config else None
                    position_embedding = uniform(
                        name='position_embedding',
                        shape=[NB_SUPPLY_CENTERS,
                               hps('trsf_emb_size')],
                        scale=1.,
                        caching_device=caching_device)

                # Past Attentions
                past_attentions, message_lengths = None, None

                # --- Decoding ---
                with tf.variable_scope('decoder_scope', reuse=tf.AUTO_REUSE):
                    feeder_cell = IdentityCell(
                        output_size=hps('trsf_emb_size') + hps('attn_size'))

                    # ======== Regular Decoding ========
                    # Applying Dropout to input, attention and output
                    feeder_cell = SeededDropoutWrapper(
                        cell=feeder_cell,
                        seeds=player_seeds,
                        input_keep_probs=1. - dropout_rates,
                        variational_recurrent=hps('use_v_dropout'),
                        input_size=hps('trsf_emb_size') + hps('attn_size'),
                        dtype=tf.float32)

                    # Apply attention over orderable location at each position
                    feeder_cell = StaticAttentionWrapper(
                        cell=feeder_cell,
                        memory=board_state_conv,
                        alignments=board_alignments,
                        sequence_length=raw_decoder_lengths,
                        output_attention=False)

                    # Setting initial state
                    feeder_cell_init_state = feeder_cell.zero_state(
                        batch_size, tf.float32)

                    # ---- Helper ----
                    helper = CustomHelper(
                        decoder_type=decoder_type,
                        inputs=decoder_inputs[:, :-1],
                        order_embedding=order_embedding,
                        candidate_embedding=candidate_embedding,
                        sequence_length=decoder_lengths,
                        candidates=candidates,
                        time_major=False,
                        softmax_temperature=temperature)

                    # ---- Transformer Cell ----
                    trsf_scope = tf.VariableScope(
                        name='policy/training_scope/transformer', reuse=False)
                    transformer_cell = TransformerCell(
                        nb_layers=hps('trsf_nb_layers'),
                        nb_heads=hps('trsf_nb_heads'),
                        word_embedding=order_embedding,
                        position_embedding=position_embedding,
                        batch_size=batch_size,
                        feeder_cell=feeder_cell,
                        feeder_init_state=feeder_cell_init_state,
                        past_attentions=past_attentions,
                        past_seq_lengths=message_lengths,
                        scope=trsf_scope,
                        name='transformer')
                    transformer_cell_init_state = transformer_cell.zero_state(
                        batch_size, tf.float32)

                    # ---- Invariants ----
                    invariants_map = {
                        'past_attentions':
                        tf.TensorShape([
                            None,  # batch size
                            hps('trsf_nb_layers'),  # nb_layers
                            2,  # key, value
                            hps('trsf_nb_heads'),  # nb heads
                            None,  # Seq len
                            hps('trsf_emb_size') // hps('trsf_nb_heads')
                        ])
                    }  # Head size

                    # ---- Decoder ----
                    sequence_mask = tf.sequence_mask(
                        raw_decoder_lengths,
                        maxlen=tf.reduce_max(decoder_lengths),
                        dtype=tf.float32)
                    maximum_iterations = NB_SUPPLY_CENTERS
                    model_decoder = CandidateBasicDecoder(
                        cell=transformer_cell,
                        helper=helper,
                        initial_state=transformer_cell_init_state,
                        max_candidate_length=max_candidate_length,
                        extract_state=True)
                    training_results, _, _ = dynamic_decode(
                        decoder=model_decoder,
                        output_time_major=False,
                        maximum_iterations=maximum_iterations,
                        invariants_map=invariants_map,
                        swap_memory=hps('swap_memory'))
                    global_vars_after_decoder = set(tf.global_variables())

                    # ======== Beam Search Decoding ========
                    tile_beam = get_tile_beam(hps('beam_width'))
                    beam_feeder_cell = IdentityCell(
                        output_size=hps('trsf_emb_size') + hps('attn_size'))

                    # Applying Dropout to input, attention and output
                    beam_feeder_cell = SeededDropoutWrapper(
                        cell=beam_feeder_cell,
                        seeds=tile_beam(player_seeds),
                        input_keep_probs=tile_beam(1. - dropout_rates),
                        variational_recurrent=hps('use_v_dropout'),
                        input_size=hps('trsf_emb_size') + hps('attn_size'),
                        dtype=tf.float32)

                    # Apply attention over orderable location at each position
                    beam_feeder_cell = StaticAttentionWrapper(
                        cell=beam_feeder_cell,
                        memory=tile_beam(board_state_conv),
                        alignments=tile_beam(board_alignments),
                        sequence_length=tile_beam(raw_decoder_lengths),
                        output_attention=False)

                    # Setting initial state
                    beam_feeder_init_state = beam_feeder_cell.zero_state(
                        batch_size * hps('beam_width'), tf.float32)

                    # ---- Transformer Cell ----
                    trsf_scope = tf.VariableScope(
                        name='policy/training_scope/transformer', reuse=True)
                    beam_trsf_cell = TransformerCell(
                        nb_layers=hps('trsf_nb_layers'),
                        nb_heads=hps('trsf_nb_heads'),
                        word_embedding=order_embedding,
                        position_embedding=position_embedding,
                        batch_size=batch_size * hps('beam_width'),
                        feeder_cell=beam_feeder_cell,
                        feeder_init_state=beam_feeder_init_state,
                        past_attentions=tile_beam(past_attentions),
                        past_seq_lengths=tile_beam(message_lengths),
                        scope=trsf_scope,
                        name='transformer')
                    beam_trsf_cell_init_state = beam_trsf_cell.zero_state(
                        batch_size * hps('beam_width'), tf.float32)

                    # ---- Beam Helper and Decoder ----
                    beam_helper = CustomBeamHelper(
                        cell=beam_trsf_cell,
                        order_embedding=order_embedding,
                        candidate_embedding=candidate_embedding,
                        candidates=candidates,
                        sequence_length=decoder_lengths,
                        initial_state=beam_trsf_cell_init_state,
                        beam_width=hps('beam_width'))
                    beam_decoder = DiverseBeamSearchDecoder(
                        beam_helper=beam_helper,
                        sequence_length=decoder_lengths,
                        nb_groups=hps('beam_groups'))
                    beam_results, beam_state, _ = dynamic_decode(
                        decoder=beam_decoder,
                        output_time_major=False,
                        maximum_iterations=maximum_iterations,
                        invariants_map=invariants_map,
                        swap_memory=hps('swap_memory'))

                    # Making sure we haven't created new global variables
                    assert not set(
                        tf.global_variables()
                    ) - global_vars_after_decoder, 'New global vars were created'

                    # Processing results
                    candidate_logits = training_results.rnn_output  # (b, dec_len, max_cand_len)
                    logits_length = tf.shape(candidate_logits)[1]  # dec_len
                    decoder_target = decoder_inputs[:, 1:1 + logits_length]

                    # Selected tokens are the token that was actually fed at the next position
                    sample_mask = to_float(
                        tf.math.equal(training_results.sample_id, -1))
                    selected_tokens = to_int32(
                        sequence_mask *
                        (sample_mask * to_float(decoder_target) +
                         (1. - sample_mask) *
                         to_float(training_results.sample_id)))

                    # Computing ArgMax tokens
                    argmax_id = to_int32(tf.argmax(candidate_logits, axis=-1))
                    max_nb_candidate = tf.shape(candidate_logits)[2]
                    candidate_ids = \
                        tf.reduce_sum(tf.one_hot(argmax_id, max_nb_candidate, dtype=tf.int32) * candidates, axis=-1)
                    argmax_tokens = to_int32(
                        to_float(candidate_ids) * sequence_mask)

                    # Extracting the position of the target candidate
                    tokens_labels = tf.argmax(
                        to_int32(
                            tf.math.equal(selected_tokens[:, :, None],
                                          candidates)), -1)
                    target_labels = tf.argmax(
                        to_int32(
                            tf.math.equal(decoder_target[:, :, None],
                                          candidates)), -1)

                    # Log Probs
                    log_probs = -1. * cross_entropy(
                        logits=candidate_logits,
                        labels=tokens_labels) * sequence_mask

                # Computing policy loss
                with tf.variable_scope('policy_loss'):
                    policy_loss = sequence_loss(logits=candidate_logits,
                                                targets=target_labels,
                                                weights=sequence_mask,
                                                average_across_batch=True,
                                                average_across_timesteps=True)
                    policy_loss = tf.cond(
                        stop_gradient_all,
                        lambda: tf.stop_gradient(policy_loss),  # pylint: disable=cell-var-from-loop
                        lambda: policy_loss)  # pylint: disable=cell-var-from-loop

        # Building output tags
        outputs = {
            'tag/policy/order_based/v015_film_transformer_gpt':
            True,
            'targets':
            decoder_inputs[:, 1:],
            'selected_tokens':
            selected_tokens,
            'argmax_tokens':
            argmax_tokens,
            'logits':
            candidate_logits,
            'log_probs':
            log_probs,
            'beam_tokens':
            tf.transpose(beam_results.predicted_ids,
                         perm=[0, 2, 1]),  # [batch, beam, steps]
            'beam_log_probs':
            beam_state.log_probs,
            'rnn_states':
            training_results.rnn_state,
            'policy_loss':
            policy_loss,
            'draw_prob':
            self.outputs.get('draw_prob',
                             tf.zeros_like(self.features['draw_target'])),
            'learning_rate':
            self.learning_rate
        }

        # Adding features, placeholders and outputs to graph
        self.add_meta_information(outputs)
Esempio n. 6
0
    def _get_board_value(self,
                         board_state,
                         current_power,
                         name='board_state_value',
                         reuse=None):
        """ Computes the estimated value of a board state
            :param board_state: The board state - (batch, NB_NODES, NB_FEATURES)
            :param current_power: The power for which we want the board value - (batch,)
            :param name: The name to use for the operaton
            :param reuse: Whether to reuse or not the weights from another operation
            :return: The value of the board state for the specified power - (batch,)
        """
        from diplomacy_research.utils.tensorflow import tf
        from diplomacy_research.models.layers.graph_convolution import GraphConvolution, preprocess_adjacency

        # Quick function to retrieve hparams and placeholders and function shorthands
        hps = lambda hparam_name: self.hparams[hparam_name]
        relu = tf.nn.relu

        # Computing norm adjacency
        norm_adjacency = preprocess_adjacency(get_adjacency_matrix())
        norm_adjacency = tf.tile(tf.expand_dims(norm_adjacency, axis=0),
                                 [tf.shape(board_state)[0], 1, 1])

        # Building scope
        # No need to use 'stop_gradient_value' - Because this model does not share parameters.
        scope = tf.VariableScope(name='value/%s' % name, reuse=reuse)
        with tf.variable_scope(scope):

            with tf.variable_scope('graph_conv_scope'):
                graph_conv = board_state  # (b, NB_NODES, NB_FEAT)
                graph_conv = GraphConvolution(
                    input_dim=graph_conv.shape[-1].
                    value,  # (b, NB_NODES, gcn_1)
                    output_dim=hps('value_gcn_1_output_size'),
                    norm_adjacency=norm_adjacency,
                    activation_fn=relu,
                    bias=True)(graph_conv)
                flat_graph_conv = tf.reshape(
                    graph_conv,
                    shape=[-1, NB_NODES * hps('value_gcn_1_output_size')])
                flat_graph_conv = tf.layers.Dense(
                    units=hps('value_embedding_size'),
                    activation=relu,
                    use_bias=True)(flat_graph_conv)  # (b, value_emb_size)

            with tf.variable_scope('value_scope'):
                current_power_mask = tf.one_hot(current_power,
                                                NB_POWERS,
                                                dtype=tf.float32)
                state_value = flat_graph_conv  # (b, value_emb_size)
                state_value = tf.layers.Dense(
                    units=hps('value_h1_size'),  # (b, value_h1_size)
                    activation=relu,
                    use_bias=True)(state_value)
                state_value = tf.layers.Dense(
                    units=hps('value_h2_size'),  # (b, value_h2_size)
                    activation=relu,
                    use_bias=True)(state_value)
                state_value = tf.layers.Dense(
                    units=NB_POWERS,  # (b, NB_POWERS)
                    activation=None,
                    use_bias=True)(state_value)
                state_value = tf.reduce_sum(state_value * current_power_mask,
                                            axis=1)  # (b,)

        # Returning
        return state_value