fig = plt.figure(2) plt.errorbar( energy_bin_median, [rad2deg * i for i in phase_avg], xerr=[energy_err_lower, energy_err_upper], fmt="o" ) ax = fig.axes[0] ax.axis("on") tPars = {"fontsize": 16} # ax.set_ylim(-210,200) ax.set_xlabel(r"$\log_{10}(E/\mathrm{GeV})", **tPars) ax.set_ylabel(r"Phase Amplitude", **tPars) if args.output: if args.plotname: outFile = args.outDir + args.plotname else: if args.lmax == 1: name = "phase_dipolefit" elif args.lmax == 2: name = "phase_quadrupolefit" elif args.lmax == 3: name = "phase_octupolefit" else: name = "phase_data" outFile = args.outDir + name plt.savefig(outFile + "." + args.ext, dpi=300, bbox_inches="tight") dipole_vec = getDipole() if not args.noshow: plt.show()
# Produce dipole expansion coeeficient plot #fig = plt.figure(1) labels = [r'$l=1$',r'$l=2$',r'$l=3$'] #for i in range(1): for l in range(1,args.lmax+1): amplitude = [] amplitude_err = [] phase = [] phase_err = [] for i in range(len(maps)): # Read in (multiple) input files data, bg, local = np.sum([hp.read_map(f, range(3), verbose=False)\ for f in maps[i]], axis=0) p = multifit(l, data, bg, alpha, **opts) #print('p = {}'.format(np.sqrt(p['Y(1,0)']**2+p['Y(1,1)']**2+p['Y(1,-1)']**2))) dipole = getDipole(p) #print('dipole = {}'.format(dipole)) #print('dipole[0] = {}'.format(dipole[0])) amplitude.append(dipole[0]) amplitude_err.append(dipole[1]) phase.append(dipole[2]) phase_err.append(dipole[3]) fig = plt.figure(l) plt.errorbar(energy_bin_median,amplitude,xerr=[energy_err_lower,energy_err_upper],\ yerr=amplitude_err,marker='.',markersize=10,linestyle='None') plt.title(r'$l_{} = $ {}'.format('{max}',l)) ax = fig.axes[0] ax.axis('on') tPars = {'fontsize':16} ax.set_xlim(3.5,7.5)