Esempio n. 1
0
def main():
    print(len(all_info), 'vases')
    link_dict = dict()
    for img_id, img_info in tqdm(all_info.items()):
        # input(img_info)  # if you want to see one line
        if 'fragment' in img_info['Title'].lower() or \
                'fragment' in img_info['description'].lower() or \
                'Fragments' in img_info['categories']:
            link_dict[img_id] = img_info['src']
            try:
                img = dip.imread(id_to_img_name(img_id))
            except:
                continue
            print(img.shape)
            new_img = dip.resize(img, dsize=outsize, interpolation=INTER_AREA)
            dip.im_write(new_img, id_to_out_name(img_id))
        elif 'terra' in img_info['Title'].lower() or \
                'Medium' not in img_info or \
                ('Medium' in img_info and 'terra' in img_info['Medium'].lower()) or \
                'terra' in img_info['description'].lower() or \
                'Terracotta' in img_info['categories']:
            pass
            # if outsize:
            #     try:
            #         img = dip.imread(id_to_img_name(img_id))
            #     except:
            #         continue
            #     print(img.shape)
            #     new_img = dip.resize(img, dsize=outsize, interpolation=INTER_AREA)
            #     dip.im_write(new_img, id_to_out_name(img_id))
            # else:
            #     shutil.copyfile(id_to_img_name(img_id), id_to_out_name(img_id))
    with open('data/raw/frag_links.pkl', 'wb') as f:
        pickle.dump(link_dict, f)
Esempio n. 2
0
def main(outsize=default_outsize):
    print(len(all_info), 'vases')
    for img_id, img_info in all_info.items():
        # input(img_info)  # if you want to see one line
        if 'fragment' in img_info['Title'].lower() or \
                'fragment' in img_info['description'].lower() or \
                'Fragments' in img_info['categories']:
            continue
        # just get Terracotta
        elif 'terra' in img_info['Title'].lower() or \
                'Medium' not in img_info or \
                ('Medium' in img_info and 'terra' in img_info['Medium'].lower()) or \
                'terra' in img_info['description'].lower() or \
                'Terracotta' in img_info['categories']:
            # just get everything that's not broken
            # else:
            if outsize:
                try:
                    img = dip.imread(id_to_img_name(img_id))
                except:
                    continue
                print(img.shape)
                new_img = dip.resize(img,
                                     dsize=outsize,
                                     interpolation=INTER_AREA)
                dip.im_write(new_img, id_to_out_name(img_id))
            else:
                shutil.copyfile(id_to_img_name(img_id), id_to_out_name(img_id))
Esempio n. 3
0
def main_pix2pix():
    def out_pix2pix_name():
        global _pix2pix_counter
        outname = f'{_pix2pix_dir}/{_pix2pix_counter}.jpg'
        _pix2pix_counter += 1
        return outname

    for f_img in glob.glob(dir_in + '/*'):
        try:
            img = dip.imread(f_img)
        except:
            continue
        img_out = dip.resize(img, _pix2pix_outsize, interpolation=INTER_AREA)
        print(f_img, img.shape)
        if len(img.shape) == 3:
            gray = np.mean(img, axis=-1)
        else:
            # gray = img
            continue
        grad = dip.transforms.edge_detect(gray)
        mask, m_min, m_max, n_min, n_max = space_fill(grad)

        for n in range(n_fragments):
            # frag_size = max(img.shape[0], img.shape[1]) // 4
            frag_size = img.shape[0]//4, img.shape[1]//4
            frag, _ = fragment(img, m_min, m_max, n_min, n_max, frag_size=frag_size)
            if frag is None:
                break
            else:
                frag = dip.resize(frag, _pix2pix_outsize, interpolation=INTER_AREA)
                both = np.concatenate([img_out, frag], axis=1)
                # plt.imshow(both)
                # plt.show()

                dip.im_write(both, out_pix2pix_name())
Esempio n. 4
0
def main_biggan():
    for f_img in glob.glob(dir_in + '/*'):
        img = dip.imread(f_img)
        img_id = int(os.path.split(f_img)[-1].split('.')[0])
        print(f_img, img.shape)
        if len(img.shape) == 3:
            gray = np.mean(img, axis=-1)
        else:
            # gray = img
            continue
        grad = dip.transforms.edge_detect(gray)
        mask, m_min, m_max, n_min, n_max = space_fill(grad)
        grad = mark_image_box(grad, m_min, m_max, n_min, n_max)

        frag_failed = False
        for n in range(n_fragments):
            frag, _ = fragment(img, m_min, m_max, n_min, n_max)
            if frag is None:
                frag_failed = True
                break
            dip.im_write(frag, out_frag(img_id, n))

        if frag_failed:
            continue

        shutil.copyfile(f_img, out_img(img_id))
Esempio n. 5
0
def main_site_vasegen():
    for f_img in tqdm(glob.glob(dir_in + '/*')):
        try:
            img = dip.imread(f_img)
        except:
            continue
        img_id = int(os.path.split(f_img)[-1].split('.')[0])
        # img_out = dip.resize(img, _pix2pix_outsize, interpolation=INTER_AREA)
        print(f_img, img.shape)
        if len(img.shape) == 3:
            gray = np.mean(img, axis=-1)
        else:
            # gray = img
            continue
        grad = dip.transforms.edge_detect(gray)
        mask, m_min, m_max, n_min, n_max = space_fill(grad)
        trimx = grad.shape[0] // 20
        trimy = grad.shape[1] // 20
        grad[:trimx, :] = 0
        grad[-trimx:, :] = 0
        grad[:, :trimy] = 0
        grad[:, -trimy:] = 0
        markerx = _pix2pix_marker_size * (
            grad.shape[0]) // _pix2pix_outsize[0] // 2
        markery = _pix2pix_marker_size * (
            grad.shape[1]) // _pix2pix_outsize[1] // 2

        grad_top = grad > np.percentile(grad, 99)
        border_inds = np.argwhere(grad_top)
        hull = ConvexHull(border_inds)
        _frag_context = np.zeros_like(grad_top)

        mm = list(np.ndindex(_frag_context.shape[:2]))
        out_hull = isInHull(mm, hull)
        mm = np.array(mm)[out_hull]
        # print(mm)
        # input(out_hull)
        _frag_context = np.stack([255 * ~_frag_context] * 3 + [_frag_context],
                                 axis=-1).astype(np.uint8)
        _frag_context[mm[:, 0], mm[:, 1], :3] = img[mm[:, 0], mm[:, 1]]
        _frag_context[mm[:, 0], mm[:, 1], 3] = 255
        dip.im_write(_frag_context, out_img(img_id))
    def _test_restore_mode(self, file, deg_type, save_images=False, name=None):
        fh = ImageFileHandler()
        im_degrader = ImageDegrader()
        im = fh.open_image_file_as_matrix(file)
        degraded_im = im_degrader.degrade(im,
                                          degradation_type=deg_type,
                                          severity_value=.5)
        restored_im, clustered_im, h_params = self.multiplicative_clustering_restore(
            degraded_im)
        restored_im_2 = self.fast_multiplicative_restore(
            degraded_im, h_param=np.mean(h_params), search_window_size=21)
        if save_images:
            dip.im_write(dip.float_to_im(degraded_im),
                         "./" + name + "_degraded_image.jpg",
                         quality=95)
            dip.im_write(dip.float_to_im(restored_im),
                         "./" + name + "_restored_image.jpg",
                         quality=95)
            dip.im_write(dip.float_to_im(clustered_im),
                         "./" + name + "_clustered_image.jpg",
                         quality=95)

        dip.figure()

        dip.subplot(141)
        dip.imshow(im, cmap="gray")

        dip.subplot(142)
        dip.imshow(degraded_im, cmap="gray")
        dip.xlabel("PSNR: {0:.2f}, SSIM: {1:.2f}".format(
            dip.PSNR(im, degraded_im),
            dip.SSIM(im, degraded_im)[0]))

        dip.subplot(143)
        dip.imshow(restored_im, cmap="gray")
        dip.xlabel("PSNR: {0:.2f}, SSIM: {1:.2f}".format(
            dip.PSNR(im, restored_im),
            dip.SSIM(im, restored_im)[0]))

        dip.subplot(144)
        dip.imshow(restored_im_2, cmap="gray")
        dip.xlabel("PSNR: {0:.2f}, SSIM: {1:.2f}".format(
            dip.PSNR(im, restored_im_2),
            dip.SSIM(im, restored_im_2)[0]))

        dip.show()
Esempio n. 7
0
#(c) Reading an image
X = dip.im_read(picture_link)

#(d) Converting the image to normalized floating point space
X = dip.im_to_float(X)
X *= 255

#(e) Adding Constant to Image
Y = X + 75

#(f) Renormalize the image and covert to integer
Y = dip.float_to_im(Y/255)

#(g) Writing an image to disk
dip.im_write(Y, save_link_1)

#(h) Square Intenstiy and write image to disk
Z = X**2
Z = dip.float_to_im(Z/255)
Z = dip.im_write(Z, save_link_2)

#(i) Compute FFT of X
fX = dip.fft2(X)
fX = dip.fftshift(fX)
fX = np.log(np.abs(fX))

#(j) Save and show the resulting spectrum
dip.imshow(fX)
dip.show()
        # (3) Find the min-area contour
        _, cnts, _ = cv2.findContours(threshed, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
        cntsSorted = sorted(cnts, key=cv2.contourArea)
        cnt = cntsSorted[-1]

        # (4) Create mask and do bitwise-op
        mask = np.zeros(img.shape[:2], np.uint8)
        cv2.drawContours(mask, [cnt], -1, 255, -1)
        dst = cv2.bitwise_and(img, img, mask=mask)

        # (5) Crop image to JUST around the object, resize so object is in center
        x, y, w, h = util.find_bounding_rect(dst)
        dstcrop = dst[y:y + h, x:x + w]
        dstcrop = util.resize_image(dstcrop, M_max, N_max, 'constant')

        # (6) Logical OR - for accumulation of images
        accum_object = cv2.bitwise_or(dstcrop, accum_object)
        accum_total = cv2.bitwise_or(dstcrop, accum_total)

    x, y, w, h = util.find_bounding_rect(accum_object)
    accum_object = accum_object[y:y + h, x:x + w]
    dip.im_write(accum_object, PATH_OUT_TEMPLATE_IMAGES + 'template_' + str(template_id).zfill(2) + ".jpg")
    template_id = template_id + 1

x, y, w, h = util.find_bounding_rect(accum_total)
accum_total = accum_total[y:y + h, x:x + w]
dip.im_write(accum_total, PATH_OUT_TEMPLATE_IMAGES + 'template_master.jpg')


Esempio n. 9
0
###########################
# RESIZING IMAGES         #
###########################
dir_no = "../grayscale_data/no/"
dir_yes = "../grayscale_data/yes/"
dirs = [dir_no, dir_yes]

for directory in dirs:
    for filename in os.listdir(directory):
        im = dip.im_read(directory + filename)
        out = dip.resize(im, (350, 300), interpolation=cv2.INTER_CUBIC)
        filename_without_extension = os.path.splitext(filename)[0]
        if directory == dir_no:
            dip.im_write(out,
                         "../resized_data/no/" + filename_without_extension +
                         ".png",
                         quality=95)  # 95 is the best possible image quality
        elif directory == dir_yes:
            dip.im_write(out,
                         "../resized_data/yes/" + filename_without_extension +
                         ".png",
                         quality=95)  # 95 is the best possible image quality

###########################
# VARYING CONTRAST        #
###########################
dir_no = "../resized_data/no/"
dir_yes = "../resized_data/yes/"
dirs = [dir_no, dir_yes]

for directory in dirs:
Esempio n. 10
0
 def save_matrix_as_image_file(self, matrix, image_path):
     dip.im_write(dip.float_to_im(matrix), image_path)
Esempio n. 11
0
## Change the path to where you want to save the resulting images
path_mix = "/Users/chuchu/Dropbox/gt_exp/set2/image_mix/"
##

o_c_e = [(1, 0, 0), (0, 1, 0), (0, 0, 1), (0.5, 0.25, 0.25), (0.25, 0.5, 0.25),
         (0.25, 0.25, 0.5), (0.33, 0.33, 0.33)]

dir = path_mix
if not os.path.exists(dir):
    os.makedirs(dir)

for event in range(3, len(o_c_e)):
    dir = path_mix + 'event_' + str(o_c_e[event][0]) + '_' + str(
        o_c_e[event][1]) + '_' + str(o_c_e[event][2])
    if not os.path.exists(dir):
        os.makedirs(dir)
    for filename in os.listdir(path_orgin):
        path_image_origin = path_orgin + filename
        path_image_contrast = path_contrast + filename
        path_image_edge = path_edge + filename
        im_origin = dip.im_read(path_image_origin)  # read icmage
        im_contrast = dip.im_read(path_image_contrast)  # read icmage
        im_edge = dip.im_read(path_image_edge)  # read icmage

        im_mix = (im_origin * o_c_e[event][0] + im_contrast * o_c_e[event][1] +
                  im_edge * o_c_e[event][2]).astype(np.uint8)

        save_name = dir + '/' + filename[:-4] + '.png'

        dip.im_write(im_mix, save_name)
Esempio n. 12
0
import numpy as np
import matplotlib.pyplot as plt
import os

path = "/Users/chuchu/Dropbox/gt_exp/ddb1_fundusimages/"  # Change the path to where you store the images
modes = [2, 3, 4]
for m in range(len(modes)):
    dir = 'upsample_img/'+str(modes[m]);
    if not os.path.exists(dir):
        os.makedirs(dir)

for m in range(len(modes)):
    for filename in os.listdir(path):
        mode = modes[m]
        file_path = path + filename
        f = dip.im_read(file_path)  # read icmage
        f = dip.im_to_float(f)
        M = np.array([[1/mode, 0],
                      [0, 1/mode]])
        f_up_0 = dip.sampling.resample(f[:,:,0], M, interp= 'bilinear')
        f_up_1 = dip.sampling.resample(f[:, :, 1], M, interp='bilinear')
        f_up_2 = dip.sampling.resample(f[:, :, 2], M, interp='bilinear')
        h, l = f_up_0.shape
        f_up = np.zeros((h, l, 3))
        f_up[:,:,0] = f_up_0
        f_up[:, :, 1] = f_up_1
        f_up[:, :, 2] = f_up_2
        upsample_img = 'upsample_img/' + str(mode)+ '/' +filename[:-4] + '_up' + str(mode) + '.jpg'
        save_im = dip.float_to_im(f_up)
        dip.im_write(save_im, upsample_img)
Esempio n. 13
0
import dippykit as dip
from cv2 import INTER_AREA, INTER_CUBIC

try:
    outsize = (int(sys.argv[1]) * 2, int(sys.argv[1]))
except:
    print('provide a number for the side of the square image to scale to')
    exit()

_pix2pix_indir = 'data/processed/pix2pix_vase_fragments/train/'
_pix2pix_outdir = f'data/processed/pix2pix_vase_fragments_{sys.argv[1]}/train/'
out_pix2pix = lambda fname: f'{_pix2pix_outdir}/{fname}.jpg'

if os.path.exists(_pix2pix_outdir):
    y_n = input(f'Folder {_pix2pix_outdir} exists, overwrite?')
    if 'y' not in y_n:
        exit()

os.makedirs(_pix2pix_outdir, exist_ok=True)

for f_img in tqdm(glob.glob(_pix2pix_indir + '/*.jpg')):
    try:
        img = dip.imread(f_img)
    except:
        continue

    img_name = os.path.split(f_img)[-1]

    img = dip.resize(img, outsize, interpolation=INTER_CUBIC)
    dip.im_write(img, out_pix2pix(img_name))
dir = 'enhance/';
if not os.path.exists(dir):
    os.makedirs(dir)

for mode in modes:
    for filename in os.listdir(path):
        file_path = path + filename
        f = dip.im_read(file_path)           #read icmage
        f = dip.im_to_float(f)
        f_g = rgb2gray(f)
        f_edge = dip.transforms.edge_detect(f_g, mode = mode, as_bool=False);
        edgename = 'edge/' + filename[:-4] +  '.png';
        if mode is not 'canny':
            f_edge *= 1/f_edge.max()
        save_im = dip.float_to_im(f_edge)
        dip.im_write(save_im, edgename)

        f[:,:,0] += f_edge
        f[:, :, 1] += f_edge
        f[:, :, 2] += f_edge
        enhance_img = 'enhance/' + filename[:-4] +  '.png';
        save_im = dip.float_to_im(f)
        dip.im_write(save_im, enhance_img)

####combine all
#
# for filename in os.listdir(path):
#     file_path = path + filename
#     f = dip.im_read(file_path)  # read icmage
#     f = dip.im_to_float(f)
#     f_g = rgb2gray(f)
Esempio n. 15
0
def main_pix2pix_context():
    def out_pix2pix_name():
        global _pix2pix_counter
        outname = f'{_pix2pix_dir}/{_pix2pix_counter}.jpg'
        _pix2pix_counter += 1
        return outname

    for f_img in tqdm(glob.glob(dir_in + '/*')):
        try:
            img = dip.imread(f_img)
        except:
            continue
        img_id = int(os.path.split(f_img)[-1].split('.')[0])
        # img_out = dip.resize(img, _pix2pix_outsize, interpolation=INTER_AREA)
        print(f_img, img.shape)
        if len(img.shape) == 3:
            gray = np.mean(img, axis=-1)
        else:
            # gray = img
            continue
        grad = dip.transforms.edge_detect(gray)
        mask, m_min, m_max, n_min, n_max = space_fill(grad)
        trimx = grad.shape[0] // 20
        trimy = grad.shape[1] // 20
        grad[:trimx, :] = 0
        grad[-trimx:, :] = 0
        grad[:, :trimy] = 0
        grad[:, -trimy:] = 0
        markerx = _pix2pix_marker_size * (grad.shape[0]) // _pix2pix_outsize[0] // 2
        markery = _pix2pix_marker_size * (grad.shape[1]) // _pix2pix_outsize[1] // 2

        grad_top = grad > np.percentile(grad, 99)
        border_inds = np.argwhere(grad_top)
        hull = ConvexHull(border_inds)
        perim = border_inds[hull.vertices]
        perim = np.concatenate((perim, border_inds[hull.vertices[:1]]), axis=0)
        _frag_context = np.zeros_like(grad_top)
        for a, b in zip(perim[:-1], perim[1:]):
            a, b = np.array(a), np.array(b)
            for t in np.linspace(0, 1, max(grad.shape)):
                p = t * a + (1 - t) * b
                ind = np.round(p).astype(np.int)
                mstart = max(ind[0] - markerx, 0)
                mstop = min(ind[0] + markerx, grad.shape[0] - 1)
                nstart = max(ind[1] - markery, 0)
                nstop = min(ind[1] + markery, grad.shape[1] - 1)
                _frag_context[mstart:mstop, nstart:nstop] = 1
        mm = list(np.ndindex(_frag_context.shape[:2]))
        out_hull = isInHull(mm, hull)
        mm = np.array(mm)[~out_hull]
        # print(mm)
        # input(out_hull)
        _frag_context = np.stack([255*~_frag_context]*3, axis=-1).astype(np.uint8)
        _frag_context[mm[:, 0], mm[:, 1]] = img[mm[:, 0], mm[:, 1]]

        # binary erosion - erodes binary blocks like sand bars
        # frag_context2 = frag_context & binary_erosion(frag_context)

        # threshold/contour method
        # ret, thresh = cv2.threshold(grad, np.percentile(grad, 95), 255, 0)
        # contours, hier = cv2.findContours(thresh.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
        # print(contours, hier.shape)
        # frag_context = np.zeros_like(grad)
        # cv2.drawContours(frag_context, contours, -1, 255, 3)
        # draw contours according to hierarchy
        # frag_context2 = np.zeros_like(grad)
        # hier = (hier - np.min(hier)) / (np.max(hier) - np.min(hier))
        # for h, contlist in zip(hier[0], contours):
        #     for cont in contlist:
        #         frag_context2[cont[0, 1], cont[0, 0]] = max(h)

        # otsu thresholding
        # val = filters.threshold_otsu(gray); frag_context = gray < val
        for n in range(n_fragments):
            # frag_size = max(img.shape[0], img.shape[1]) // 4
            frag_size = img.shape[0]//4, img.shape[1]//4
            frag, frag_pos = fragment(img, m_min, m_max, n_min, n_max, frag_size=frag_size)
            fragx = slice(frag_pos[0], frag_pos[0]+frag_size[0])
            fragy = slice(frag_pos[1], frag_pos[1]+frag_size[1])
            if frag is None:
                break
            else:
                frag_context = np.copy(_frag_context)
                white = (255, 255, 255)
                frag_context[fragx, fragy][frag != white] = frag[frag != white]
                # img = np.copy(img)
                # img[fragx, fragy][frag != white] = frag[frag != white]
                # frag_context_out = dip.resize(frag_context, _pix2pix_outsize, interpolation=INTER_AREA)

                # frag_context_out = frag_context_out[:, :, 0]
                # print(img_out.shape, frag_context_out.shape)
                # print(img_out.dtype, frag_context_out.dtype)
                # both = np.concatenate([img_out, frag_context_out], axis=1)
                both = np.concatenate([img, frag_context], axis=1)

                # plt.subplot(221)
                # plt.imshow(img)
                # plt.subplot(222)
                # plt.imshow(grad)
                # plt.subplot(223)
                # plt.imshow(frag_context)
                # plt.subplot(224)
                # plt.imshow(both)
                # plt.show()

                dip.im_write(both, out_pix2pix(img_id, n))