Esempio n. 1
0
def ClosestPeak(name=None, data_path=None, output_path='.', Threshold=.20):

    time0 = time.time()
    print("begin loading data, time:", time.time() - time0)
    data, affine, img, labels, gtab, head_mask = get_data(name, data_path)

    seed_mask = (labels == 2) * (head_mask == 1)
    white_matter = (labels == 2) * (head_mask == 1)
    seeds = utils.seeds_from_mask(seed_mask, affine, density=1)

    print("begin reconstruction, time:", time.time() - time0)
    response, ratio = auto_response_ssst(gtab, data, roi_radii=10, fa_thr=0.7)
    csd_model = ConstrainedSphericalDeconvModel(gtab, response, sh_order=6)
    #csd_fit = csd_model.fit(data, mask=white_matter)
    #pmf = csd_fit.odf(small_sphere).clip(min=0)
    peak_dg = BootDirectionGetter.from_data(data,
                                            csd_model,
                                            max_angle=30.,
                                            sphere=small_sphere)

    csa_model = CsaOdfModel(gtab, sh_order=6)
    gfa = csa_model.fit(data, mask=white_matter).gfa
    stopping_criterion = ThresholdStoppingCriterion(gfa, Threshold)

    #from dipy.data import small_sphere

    print("begin tracking, time:", time.time() - time0)
    #detmax_dg = DeterministicMaximumDirectionGetter.from_shcoeff(
    #    csd_fit.shm_coeff, max_angle=30., sphere=default_sphere)
    streamline_generator = LocalTracking(peak_dg,
                                         stopping_criterion,
                                         seeds,
                                         affine,
                                         step_size=.5)
    streamlines = Streamlines(streamline_generator)
    sft = StatefulTractogram(streamlines, img, Space.RASMM)

    print("begin saving, time:", time.time() - time0)

    output = output_path + '/tractogram_ClosestPeak_' + name + '.trk'
    save_trk(sft, output)

    print("finished, time:", time.time() - time0)
Esempio n. 2
0
def test_bootstap_peak_tracker():
    """This tests that the Bootstrat Peak Direction Getter plays nice
    LocalTracking and produces reasonable streamlines in a simple example.
    """
    sphere = get_sphere('repulsion100')

    # A simple image with three possible configurations, a vertical tract,
    # a horizontal tract and a crossing
    simple_image = np.array([
        [0, 1, 0, 0, 0, 0],
        [0, 1, 0, 0, 0, 0],
        [2, 3, 2, 2, 2, 0],
        [0, 1, 0, 0, 0, 0],
        [0, 1, 0, 0, 0, 0],
    ])
    simple_image = simple_image[..., None]

    bvecs = sphere.vertices
    bvals = np.ones(len(bvecs)) * 1000
    bvecs = np.insert(bvecs, 0, np.array([0, 0, 0]), axis=0)
    bvals = np.insert(bvals, 0, 0)
    gtab = gradient_table(bvals, bvecs)
    angles = [(90, 90), (90, 0)]
    fracs = [50, 50]
    mevals = np.array([[1.5, 0.4, 0.4], [1.5, 0.4, 0.4]]) * 1e-3
    mevecs = [
        np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]),
        np.array([[0, 1, 0], [1, 0, 0], [0, 0, 1]])
    ]
    voxel1 = single_tensor(gtab, 1, mevals[0], mevecs[0], snr=None)
    voxel2 = single_tensor(gtab, 1, mevals[0], mevecs[1], snr=None)
    voxel3, _ = multi_tensor(gtab,
                             mevals,
                             fractions=fracs,
                             angles=angles,
                             snr=None)
    data = np.tile(voxel3, [5, 6, 1, 1])
    data[simple_image == 1] = voxel1
    data[simple_image == 2] = voxel2

    response = (np.array(mevals[1]), 1)
    csd_model = ConstrainedSphericalDeconvModel(gtab, response, sh_order=6)

    seeds = [np.array([0., 1., 0.]), np.array([2., 4., 0.])]

    sc = BinaryStoppingCriterion((simple_image > 0).astype(float))
    sphere = HemiSphere.from_sphere(get_sphere('symmetric724'))
    boot_dg = BootDirectionGetter.from_data(data, csd_model, 60, sphere=sphere)

    streamlines_generator = LocalTracking(boot_dg, sc, seeds, np.eye(4), 1.)
    streamlines = Streamlines(streamlines_generator)
    expected = [
        np.array([[0., 1., 0.], [1., 1., 0.], [2., 1., 0.], [3., 1., 0.],
                  [4., 1., 0.]]),
        np.array([
            [2., 4., 0.],
            [2., 3., 0.],
            [2., 2., 0.],
            [2., 1., 0.],
            [2., 0., 0.],
        ])
    ]

    def allclose(x, y):
        return x.shape == y.shape and np.allclose(x, y, atol=0.5)

    if not allclose(streamlines[0], expected[0]):
        raise AssertionError()
    if not allclose(streamlines[1], expected[1]):
        raise AssertionError()
gfa = csa_model.fit(data, mask=white_matter).gfa
classifier = ThresholdTissueClassifier(gfa, .25)
"""
Next, we need to set up our two direction getters
"""
"""
Example #1: Bootstrap direction getter with CSD Model
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"""

from dipy.direction import BootDirectionGetter
from dipy.tracking.streamline import Streamlines
from dipy.data import small_sphere

boot_dg_csd = BootDirectionGetter.from_data(data,
                                            csd_model,
                                            max_angle=30.,
                                            sphere=small_sphere)
boot_streamline_generator = LocalTracking(boot_dg_csd,
                                          classifier,
                                          seeds,
                                          affine,
                                          step_size=.5)
streamlines = Streamlines(boot_streamline_generator)

save_trk("tractogram_bootstrap_dg.trk", streamlines, affine, labels.shape)

if has_fury:
    r = window.Renderer()
    r.add(actor.line(streamlines, colormap.line_colors(streamlines)))
    window.record(r, out_path='tractogram_bootstrap_dg.png', size=(800, 800))
    if interactive:
Esempio n. 4
0
def track_ensemble(dwi_data,
                   target_samples,
                   atlas_data_wm_gm_int,
                   parcels,
                   mod_fit,
                   tiss_classifier,
                   sphere,
                   directget,
                   curv_thr_list,
                   step_list,
                   track_type,
                   maxcrossing,
                   max_length,
                   roi_neighborhood_tol,
                   min_length,
                   waymask,
                   n_seeds_per_iter=100,
                   pft_back_tracking_dist=2,
                   pft_front_tracking_dist=1,
                   particle_count=15):
    """
    Perform native-space ensemble tractography, restricted to a vector of ROI masks.

    dwi_data : array
        4D array of dwi data.
    target_samples : int
        Total number of streamline samples specified to generate streams.
    atlas_data_wm_gm_int : array
        3D int32 numpy array of atlas parcellation intensities from Nifti1Image in T1w-warped native diffusion space,
        restricted to wm-gm interface.
    parcels : list
        List of 3D boolean numpy arrays of atlas parcellation ROI masks from a Nifti1Image in T1w-warped native
        diffusion space.
    mod : obj
        Connectivity reconstruction model.
    tiss_classifier : str
        Tissue classification method.
    sphere : obj
        DiPy object for modeling diffusion directions on a sphere.
    directget : str
        The statistical approach to tracking. Options are: det (deterministic), closest (clos), boot (bootstrapped),
        and prob (probabilistic).
    curv_thr_list : list
        List of integer curvature thresholds used to perform ensemble tracking.
    step_list : list
        List of float step-sizes used to perform ensemble tracking.
    track_type : str
        Tracking algorithm used (e.g. 'local' or 'particle').
    maxcrossing : int
        Maximum number if diffusion directions that can be assumed per voxel while tracking.
    max_length : int
        Maximum fiber length threshold in mm to restrict tracking.
    roi_neighborhood_tol : float
        Distance (in the units of the streamlines, usually mm). If any
        coordinate in the streamline is within this distance from the center
        of any voxel in the ROI, the filtering criterion is set to True for
        this streamline, otherwise False. Defaults to the distance between
        the center of each voxel and the corner of the voxel.
    min_length : int
        Minimum fiber length threshold in mm.
    waymask : str
        Path to a Nifti1Image in native diffusion space to constrain tractography.
    n_seeds_per_iter : int
        Number of seeds from which to initiate tracking for each unique ensemble combination.
        By default this is set to 200.
    particle_count
        pft_back_tracking_dist : float
        Distance in mm to back track before starting the particle filtering
        tractography. The total particle filtering tractography distance is
        equal to back_tracking_dist + front_tracking_dist. By default this is set to 2 mm.
    pft_front_tracking_dist : float
        Distance in mm to run the particle filtering tractography after the
        the back track distance. The total particle filtering tractography
        distance is equal to back_tracking_dist + front_tracking_dist. By
        default this is set to 1 mm.
    particle_count : int
        Number of particles to use in the particle filter.

    Returns
    -------
    streamlines : ArraySequence
        DiPy list/array-like object of streamline points from tractography.
    """
    from colorama import Fore, Style
    from dipy.tracking import utils
    from dipy.tracking.streamline import Streamlines, select_by_rois
    from dipy.tracking.local_tracking import LocalTracking, ParticleFilteringTracking
    from dipy.direction import ProbabilisticDirectionGetter, BootDirectionGetter, ClosestPeakDirectionGetter, DeterministicMaximumDirectionGetter

    if waymask:
        waymask_data = nib.load(waymask).get_fdata().astype('bool')

    # Commence Ensemble Tractography
    parcel_vec = list(np.ones(len(parcels)).astype('bool'))
    streamlines = nib.streamlines.array_sequence.ArraySequence()
    ix = 0
    circuit_ix = 0
    stream_counter = 0
    while int(stream_counter) < int(target_samples):
        for curv_thr in curv_thr_list:
            print("%s%s" % ('Curvature: ', curv_thr))

            # Instantiate DirectionGetter
            if directget == 'prob':
                dg = ProbabilisticDirectionGetter.from_shcoeff(
                    mod_fit, max_angle=float(curv_thr), sphere=sphere)
            elif directget == 'boot':
                dg = BootDirectionGetter.from_data(dwi_data,
                                                   mod_fit,
                                                   max_angle=float(curv_thr),
                                                   sphere=sphere)
            elif directget == 'clos':
                dg = ClosestPeakDirectionGetter.from_shcoeff(
                    mod_fit, max_angle=float(curv_thr), sphere=sphere)
            elif directget == 'det':
                dg = DeterministicMaximumDirectionGetter.from_shcoeff(
                    mod_fit, max_angle=float(curv_thr), sphere=sphere)
            else:
                raise ValueError(
                    'ERROR: No valid direction getter(s) specified.')

            for step in step_list:
                print("%s%s" % ('Step: ', step))

                # Perform wm-gm interface seeding, using n_seeds at a time
                seeds = utils.random_seeds_from_mask(
                    atlas_data_wm_gm_int > 0,
                    seeds_count=n_seeds_per_iter,
                    seed_count_per_voxel=False,
                    affine=np.eye(4))
                if len(seeds) == 0:
                    raise RuntimeWarning(
                        'Warning: No valid seed points found in wm-gm interface...'
                    )

                print(seeds)

                # Perform tracking
                if track_type == 'local':
                    streamline_generator = LocalTracking(
                        dg,
                        tiss_classifier,
                        seeds,
                        np.eye(4),
                        max_cross=int(maxcrossing),
                        maxlen=int(max_length),
                        step_size=float(step),
                        return_all=True)
                elif track_type == 'particle':
                    streamline_generator = ParticleFilteringTracking(
                        dg,
                        tiss_classifier,
                        seeds,
                        np.eye(4),
                        max_cross=int(maxcrossing),
                        step_size=float(step),
                        maxlen=int(max_length),
                        pft_back_tracking_dist=pft_back_tracking_dist,
                        pft_front_tracking_dist=pft_front_tracking_dist,
                        particle_count=particle_count,
                        return_all=True)
                else:
                    raise ValueError(
                        'ERROR: No valid tracking method(s) specified.')

                # Filter resulting streamlines by roi-intersection characteristics
                roi_proximal_streamlines = Streamlines(
                    select_by_rois(streamline_generator,
                                   affine=np.eye(4),
                                   rois=parcels,
                                   include=parcel_vec,
                                   mode='any',
                                   tol=roi_neighborhood_tol))

                print("%s%s" %
                      ('Qualifying Streamlines by node intersection: ',
                       len(roi_proximal_streamlines)))

                roi_proximal_streamlines = nib.streamlines.array_sequence.ArraySequence(
                    [
                        s for s in roi_proximal_streamlines
                        if len(s) > float(min_length)
                    ])

                print("%s%s" %
                      ('Qualifying Streamlines by minimum length criterion: ',
                       len(roi_proximal_streamlines)))

                if waymask:
                    roi_proximal_streamlines = roi_proximal_streamlines[
                        utils.near_roi(roi_proximal_streamlines,
                                       np.eye(4),
                                       waymask_data,
                                       tol=roi_neighborhood_tol,
                                       mode='any')]
                    print("%s%s" %
                          ('Qualifying Streamlines by waymask proximity: ',
                           len(roi_proximal_streamlines)))

                # Repeat process until target samples condition is met
                ix = ix + 1
                for s in roi_proximal_streamlines:
                    stream_counter = stream_counter + len(s)
                    streamlines.append(s)
                    if int(stream_counter) >= int(target_samples):
                        break
                    else:
                        continue

                # Cleanup memory
                del seeds, roi_proximal_streamlines, streamline_generator

            del dg

        circuit_ix = circuit_ix + 1
        print(
            "%s%s%s%s%s" %
            ('Completed hyperparameter circuit: ', circuit_ix,
             '...\nCumulative Streamline Count: ', Fore.CYAN, stream_counter))
        print(Style.RESET_ALL)

    print('\n')

    return streamlines
Esempio n. 5
0
gfa = csa_model.fit(data, mask=white_matter).gfa
classifier = ThresholdTissueClassifier(gfa, .25)

"""
Next, we need to set up our two direction getters
"""

"""
Example #1: Bootstrap direction getter with CSD Model
"""

from dipy.direction import BootDirectionGetter
from dipy.tracking.streamline import Streamlines
from dipy.data import small_sphere

boot_dg_csd = BootDirectionGetter.from_data(data, csd_model, max_angle=30.,
                                            sphere=small_sphere)
boot_streamline_generator = LocalTracking(boot_dg_csd, classifier, seeds,
                                          affine, step_size=.5)
streamlines = Streamlines(boot_streamline_generator)

renderer.clear()
renderer.add(actor.line(streamlines, line_colors(streamlines)))
window.record(renderer, out_path='bootstrap_dg_CSD.png', size=(600, 600))

"""
.. figure:: bootstrap_dg_CSD.png
   :align: center

   **Corpus Callosum Bootstrap Probabilistic Direction Getter**

We have created a bootstrapped probabilistic set of streamlines. If you repeat
Esempio n. 6
0
def test_bootstap_peak_tracker():
    """This tests that the Bootstrat Peak Direction Getter plays nice
    LocalTracking and produces reasonable streamlines in a simple example.
    """
    sphere = get_sphere('repulsion100')

    # A simple image with three possible configurations, a vertical tract,
    # a horizontal tract and a crossing
    simple_image = np.array([[0, 1, 0, 0, 0, 0],
                             [0, 1, 0, 0, 0, 0],
                             [2, 3, 2, 2, 2, 0],
                             [0, 1, 0, 0, 0, 0],
                             [0, 1, 0, 0, 0, 0],
                             ])
    simple_image = simple_image[..., None]

    bvecs = sphere.vertices
    bvals = np.ones(len(bvecs)) * 1000
    bvecs = np.insert(bvecs, 0, np.array([0, 0, 0]), axis=0)
    bvals = np.insert(bvals, 0, 0)
    gtab = gradient_table(bvals, bvecs)
    angles = [(90, 90), (90, 0)]
    fracs = [50, 50]
    mevals = np.array([[1.5, 0.4, 0.4], [1.5, 0.4, 0.4]]) * 1e-3
    mevecs = [np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]),
              np.array([[0, 1, 0], [1, 0, 0], [0, 0, 1]])]
    voxel1 = single_tensor(gtab, 1, mevals[0], mevecs[0], snr=None)
    voxel2 = single_tensor(gtab, 1, mevals[0], mevecs[1], snr=None)
    voxel3, _ = multi_tensor(gtab, mevals, fractions=fracs, angles=angles,
                             snr=None)
    data = np.tile(voxel3, [5, 6, 1, 1])
    data[simple_image == 1] = voxel1
    data[simple_image == 2] = voxel2

    response = (np.array(mevals[1]), 1)
    csd_model = ConstrainedSphericalDeconvModel(gtab, response, sh_order=6)

    seeds = [np.array([0., 1., 0.]), np.array([2., 4., 0.])]

    tc = BinaryTissueClassifier((simple_image > 0).astype(float))
    boot_dg = BootDirectionGetter.from_data(data, csd_model, 60)

    streamlines_generator = LocalTracking(boot_dg, tc, seeds, np.eye(4), 1.)
    streamlines = Streamlines(streamlines_generator)
    expected = [np.array([[0., 1., 0.],
                          [1., 1., 0.],
                          [2., 1., 0.],
                          [3., 1., 0.],
                          [4., 1., 0.]]),
                np.array([[2., 5., 0.],
                          [2., 4., 0.],
                          [2., 3., 0.],
                          [2., 2., 0.],
                          [2., 1., 0.],
                          [2., 0., 0.],
                          ])]

    def allclose(x, y):
        return x.shape == y.shape and np.allclose(x, y, atol=0.5)

    if not allclose(streamlines[0], expected[0]):
        raise AssertionError()
    if not allclose(streamlines[1], expected[1]):
        raise AssertionError()
Esempio n. 7
0
def dwi_dipy_run(dwi_dir,
                 node_size,
                 dir_path,
                 conn_model,
                 parc,
                 atlas_select,
                 network,
                 wm_mask=None):
    from dipy.reconst.dti import TensorModel, quantize_evecs
    from dipy.reconst.csdeconv import ConstrainedSphericalDeconvModel, recursive_response
    from dipy.tracking.local import LocalTracking, ActTissueClassifier
    from dipy.tracking import utils
    from dipy.direction import peaks_from_model
    from dipy.tracking.eudx import EuDX
    from dipy.data import get_sphere, default_sphere
    from dipy.core.gradients import gradient_table
    from dipy.io import read_bvals_bvecs
    from dipy.tracking.streamline import Streamlines
    from dipy.direction import ProbabilisticDirectionGetter, ClosestPeakDirectionGetter, BootDirectionGetter
    from nibabel.streamlines import save as save_trk
    from nibabel.streamlines import Tractogram

    ##
    dwi_dir = '/Users/PSYC-dap3463/Downloads/bedpostx_s002'
    img_pve_csf = nib.load(
        '/Users/PSYC-dap3463/Downloads/002_all/tmp/reg_a/t1w_vent_csf_diff_dwi.nii.gz'
    )
    img_pve_wm = nib.load(
        '/Users/PSYC-dap3463/Downloads/002_all/tmp/reg_a/t1w_wm_in_dwi_bin.nii.gz'
    )
    img_pve_gm = nib.load(
        '/Users/PSYC-dap3463/Downloads/002_all/tmp/reg_a/t1w_gm_mask_dwi.nii.gz'
    )
    labels_img = nib.load(
        '/Users/PSYC-dap3463/Downloads/002_all/tmp/reg_a/dwi_aligned_atlas.nii.gz'
    )
    num_total_samples = 10000
    tracking_method = 'boot'  # Options are 'boot', 'prob', 'peaks', 'closest'
    procmem = [2, 4]
    ##

    if parc is True:
        node_size = 'parc'

    dwi_img = "%s%s" % (dwi_dir, '/dwi.nii.gz')
    nodif_brain_mask_path = "%s%s" % (dwi_dir, '/nodif_brain_mask.nii.gz')
    bvals = "%s%s" % (dwi_dir, '/bval')
    bvecs = "%s%s" % (dwi_dir, '/bvec')

    dwi_img = nib.load(dwi_img)
    data = dwi_img.get_data()
    [bvals, bvecs] = read_bvals_bvecs(bvals, bvecs)
    gtab = gradient_table(bvals, bvecs)
    gtab.b0_threshold = min(bvals)
    sphere = get_sphere('symmetric724')

    # Loads mask and ensures it's a true binary mask
    mask_img = nib.load(nodif_brain_mask_path)
    mask = mask_img.get_data()
    mask = mask > 0

    # Fit a basic tensor model first
    model = TensorModel(gtab)
    ten = model.fit(data, mask)
    fa = ten.fa

    # Tractography
    if conn_model == 'csd':
        print('Tracking with csd model...')
    elif conn_model == 'tensor':
        print('Tracking with tensor model...')
    else:
        raise RuntimeError("%s%s" % (conn_model, ' is not a valid model.'))

    # Combine seed counts from voxel with seed counts total
    wm_mask_data = img_pve_wm.get_data()
    wm_mask_data[0, :, :] = False
    wm_mask_data[:, 0, :] = False
    wm_mask_data[:, :, 0] = False
    seeds = utils.seeds_from_mask(wm_mask_data,
                                  density=1,
                                  affine=dwi_img.get_affine())
    seeds_rnd = utils.random_seeds_from_mask(ten.fa > 0.02,
                                             seeds_count=num_total_samples,
                                             seed_count_per_voxel=True)
    seeds_all = np.vstack([seeds, seeds_rnd])

    # Load tissue maps and prepare tissue classifier (Anatomically-Constrained Tractography (ACT))
    background = np.ones(img_pve_gm.shape)
    background[(img_pve_gm.get_data() + img_pve_wm.get_data() +
                img_pve_csf.get_data()) > 0] = 0
    include_map = img_pve_gm.get_data()
    include_map[background > 0] = 1
    exclude_map = img_pve_csf.get_data()
    act_classifier = ActTissueClassifier(include_map, exclude_map)

    if conn_model == 'tensor':
        ind = quantize_evecs(ten.evecs, sphere.vertices)
        streamline_generator = EuDX(a=fa,
                                    ind=ind,
                                    seeds=seeds_all,
                                    odf_vertices=sphere.vertices,
                                    a_low=0.05,
                                    step_sz=.5)
    elif conn_model == 'csd':
        print('Tracking with CSD model...')
        response = recursive_response(
            gtab,
            data,
            mask=img_pve_wm.get_data().astype('bool'),
            sh_order=8,
            peak_thr=0.01,
            init_fa=0.05,
            init_trace=0.0021,
            iter=8,
            convergence=0.001,
            parallel=True)
        csd_model = ConstrainedSphericalDeconvModel(gtab, response)
        if tracking_method == 'boot':
            dg = BootDirectionGetter.from_data(data,
                                               csd_model,
                                               max_angle=30.,
                                               sphere=default_sphere)
        elif tracking_method == 'prob':
            try:
                print(
                    'First attempting to build the direction getter directly from the spherical harmonic representation of the FOD...'
                )
                csd_fit = csd_model.fit(
                    data, mask=img_pve_wm.get_data().astype('bool'))
                dg = ProbabilisticDirectionGetter.from_shcoeff(
                    csd_fit.shm_coeff, max_angle=30., sphere=default_sphere)
            except:
                print(
                    'Sphereical harmonic not available for this model. Using peaks_from_model to represent the ODF of the model on a spherical harmonic basis instead...'
                )
                peaks = peaks_from_model(
                    csd_model,
                    data,
                    default_sphere,
                    .5,
                    25,
                    mask=img_pve_wm.get_data().astype('bool'),
                    return_sh=True,
                    parallel=True,
                    nbr_processes=procmem[0])
                dg = ProbabilisticDirectionGetter.from_shcoeff(
                    peaks.shm_coeff, max_angle=30., sphere=default_sphere)
        elif tracking_method == 'peaks':
            dg = peaks_from_model(model=csd_model,
                                  data=data,
                                  sphere=default_sphere,
                                  relative_peak_threshold=.5,
                                  min_separation_angle=25,
                                  mask=img_pve_wm.get_data().astype('bool'),
                                  parallel=True,
                                  nbr_processes=procmem[0])
        elif tracking_method == 'closest':
            csd_fit = csd_model.fit(data,
                                    mask=img_pve_wm.get_data().astype('bool'))
            pmf = csd_fit.odf(default_sphere).clip(min=0)
            dg = ClosestPeakDirectionGetter.from_pmf(pmf,
                                                     max_angle=30.,
                                                     sphere=default_sphere)
        streamline_generator = LocalTracking(dg,
                                             act_classifier,
                                             seeds_all,
                                             affine=dwi_img.affine,
                                             step_size=0.5)
        del dg
        try:
            del csd_fit
        except:
            pass
        try:
            del response
        except:
            pass
        try:
            del csd_model
        except:
            pass
        streamlines = Streamlines(streamline_generator, buffer_size=512)

    save_trk(Tractogram(streamlines, affine_to_rasmm=dwi_img.affine),
             'prob_streamlines.trk')
    tracks = [sl for sl in streamlines if len(sl) > 1]
    labels_data = labels_img.get_data().astype('int')
    labels_affine = labels_img.affine
    conn_matrix, grouping = utils.connectivity_matrix(
        tracks,
        labels_data,
        affine=labels_affine,
        return_mapping=True,
        mapping_as_streamlines=True,
        symmetric=True)
    conn_matrix[:3, :] = 0
    conn_matrix[:, :3] = 0

    return conn_matrix
Esempio n. 8
0
tissue_classifier = ThresholdStoppingCriterion(FA, 0.1)
metric_map = np.asarray(FA, 'float64')

# Create seeds for ROI
seed_mask = utils.seeds_from_mask(roi_data, density=3, affine=np.eye(4))
seed_mask = seed_mask[0:args.nseeds]

# Setup model
print('slowadcodf')
sh_order = 6
model = OpdtModel(gtab, sh_order=sh_order, min_signal=1)

# Setup direction getter args
print('Bootstrap direction getter')
boot_dg = BootDirectionGetter.from_data(data,
                                        model,
                                        max_angle=60.,
                                        sphere=small_sphere)

print('streamline gen')
global_chunk_size = args.chunk_size
nchunks = (seed_mask.shape[0] + global_chunk_size - 1) // global_chunk_size

t1 = time.time()
streamline_time = 0
io_time = 0
for idx in range(int(nchunks)):
    # Main streamline computation
    ts = time.time()
    streamline_generator = LocalTracking(
        boot_dg,
        tissue_classifier,
Esempio n. 9
0
def track_ensemble(target_samples, atlas_data_wm_gm_int, parcels, parcel_vec, mod_fit,
                   tiss_classifier, sphere, directget, curv_thr_list, step_list, track_type, maxcrossing, max_length,
                   n_seeds_per_iter=200):
    from colorama import Fore, Style
    from dipy.tracking import utils
    from dipy.tracking.streamline import Streamlines, select_by_rois
    from dipy.tracking.local import LocalTracking, ParticleFilteringTracking
    from dipy.direction import ProbabilisticDirectionGetter, BootDirectionGetter, ClosestPeakDirectionGetter, DeterministicMaximumDirectionGetter

    # Commence Ensemble Tractography
    streamlines = nib.streamlines.array_sequence.ArraySequence()
    ix = 0
    circuit_ix = 0
    stream_counter = 0
    while int(stream_counter) < int(target_samples):
        for curv_thr in curv_thr_list:
            print("%s%s" % ('Curvature: ', curv_thr))

            # Instantiate DirectionGetter
            if directget == 'prob':
                dg = ProbabilisticDirectionGetter.from_shcoeff(mod_fit, max_angle=float(curv_thr),
                                                               sphere=sphere)
            elif directget == 'boot':
                dg = BootDirectionGetter.from_shcoeff(mod_fit, max_angle=float(curv_thr),
                                                      sphere=sphere)
            elif directget == 'closest':
                dg = ClosestPeakDirectionGetter.from_shcoeff(mod_fit, max_angle=float(curv_thr),
                                                             sphere=sphere)
            elif directget == 'det':
                dg = DeterministicMaximumDirectionGetter.from_shcoeff(mod_fit, max_angle=float(curv_thr),
                                                                      sphere=sphere)
            else:
                raise ValueError('ERROR: No valid direction getter(s) specified.')

            for step in step_list:
                print("%s%s" % ('Step: ', step))
                # Perform wm-gm interface seeding, using n_seeds at a time
                seeds = utils.random_seeds_from_mask(atlas_data_wm_gm_int > 0, seeds_count=n_seeds_per_iter,
                                                     seed_count_per_voxel=False, affine=np.eye(4))
                if len(seeds) == 0:
                    raise RuntimeWarning('Warning: No valid seed points found in wm-gm interface...')

                print(seeds)
                # Perform tracking
                if track_type == 'local':
                    streamline_generator = LocalTracking(dg, tiss_classifier, seeds, np.eye(4),
                                                         max_cross=int(maxcrossing), maxlen=int(max_length),
                                                         step_size=float(step), return_all=True)
                elif track_type == 'particle':
                    streamline_generator = ParticleFilteringTracking(dg, tiss_classifier, seeds, np.eye(4),
                                                                     max_cross=int(maxcrossing),
                                                                     step_size=float(step),
                                                                     maxlen=int(max_length),
                                                                     pft_back_tracking_dist=2,
                                                                     pft_front_tracking_dist=1,
                                                                     particle_count=15, return_all=True)
                else:
                    raise ValueError('ERROR: No valid tracking method(s) specified.')

                # Filter resulting streamlines by roi-intersection characteristics
                streamlines_more = Streamlines(select_by_rois(streamline_generator, parcels, parcel_vec.astype('bool'),
                                                              mode='any', affine=np.eye(4), tol=8))

                # Repeat process until target samples condition is met
                ix = ix + 1
                for s in streamlines_more:
                    stream_counter = stream_counter + len(s)
                    streamlines.append(s)
                    if int(stream_counter) >= int(target_samples):
                        break
                    else:
                        continue

        circuit_ix = circuit_ix + 1
        print("%s%s%s%s%s" % ('Completed hyperparameter circuit: ', circuit_ix, '...\nCumulative Streamline Count: ',
                              Fore.CYAN, stream_counter))
        print(Style.RESET_ALL)

    print('\n')
    return streamlines