Esempio n. 1
0
def test_shore_fitting_e0():
    gtab = get_gtab_taiwan_dsi()
    mevals = np.array(([0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003]))
    angl = [(0, 0), (60, 0)]
    S, sticks = MultiTensor(gtab, mevals, S0=100.0, angles=angl,
                            fractions=[50, 50], snr=None)

    radial_order = 8
    zeta = 700
    lambdaN = 1e-12
    lambdaL = 1e-12

    asm = ShoreModel(gtab, radial_order=radial_order,
                     zeta=zeta, lambdaN=lambdaN, lambdaL=lambdaL)
    asmfit = asm.fit(S)

    assert_almost_equal(compute_e0(asmfit), 1)

    asm = ShoreModel(gtab, radial_order=radial_order,
                     zeta=zeta, lambdaN=lambdaN, lambdaL=lambdaL,
                     constrain_e0=True)
    asmfit = asm.fit(S)

    assert_almost_equal(compute_e0(asmfit), 1.)
Esempio n. 2
0
def fit_data(data, bvals, bvecs, model_type='3D-SHORE', calculate_peak_image=False):
    """ Fits the defined model to the input dMRI and returns an MITK compliant ODF image.
    """

    # create dipy Sphere
    sphere = get_mitk_sphere()
    odf = None
    model = None
    gtab = gradient_table(bvals, bvecs)

    # fit selected model
    if model_type == '3D-SHORE':
        print('Fitting 3D-SHORE')
        radial_order = 6
        zeta = 700
        lambdaN = 1e-8
        lambdaL = 1e-8
        model = ShoreModel(gtab, radial_order=radial_order, zeta=zeta, lambdaN=lambdaN, lambdaL=lambdaL)
        asmfit = model.fit(data)
        odf = asmfit.odf(sphere)
    elif model_type == 'CSA-QBALL':
        print('Fitting CSA-QBALL')
        model = CsaOdfModel(gtab, 4)
        odf = model.fit(data).odf(sphere)
        odf = np.clip(odf, 0, np.max(odf, -1)[..., None])
    elif model_type == 'SFM':
        print('Fitting SFM')
        response, ratio = auto_response(gtab, data, roi_radius=10, fa_thr=0.7)
        model = sfm.SparseFascicleModel(gtab, sphere=sphere,
                                        l1_ratio=0.5, alpha=0.001,
                                        response=response[0])
        odf = model.fit(data).odf(sphere)
    elif model_type == 'CSD':
        print('Fitting CSD')
        response, ratio = auto_response(gtab, data, roi_radius=10, fa_thr=0.7)
        model = ConstrainedSphericalDeconvModel(gtab, response, sh_order=6)
        odf = model.fit(data).odf(sphere)
    else:
        raise ValueError('Model type not supported. Available models: 3D-SHORE, CSA-QBALL, SFM, CSD')

    print('Preparing ODF image')
    # swap axes to obtain MITK compliant format.
    # odf = odf.swapaxes(3, 2)
    # odf = odf.swapaxes(2, 1)
    # odf = odf.swapaxes(1, 0)

    odf_image = sitk.Image([data.shape[2], data.shape[1], data.shape[0]], sitk.sitkVectorFloat32, len(sphere.vertices))
    for x in range(data.shape[2]):
        for y in range(data.shape[1]):
            for z in range(data.shape[0]):
                odf_image.SetPixel(x,y,z, odf[z,y,x,:])

    # if not calculate_peak_image:
    return odf_image, None
Esempio n. 3
0
def test_shore_odf():
    gtab = get_isbi2013_2shell_gtab()

    # load repulsion 724 sphere
    sphere = default_sphere

    # load icosahedron sphere
    sphere2 = create_unit_sphere(5)
    data, golden_directions = sticks_and_ball(gtab,
                                              d=0.0015,
                                              S0=100,
                                              angles=[(0, 0), (90, 0)],
                                              fractions=[50, 50],
                                              snr=None)
    asm = ShoreModel(gtab,
                     radial_order=6,
                     zeta=700,
                     lambdaN=1e-8,
                     lambdaL=1e-8)
    # repulsion724
    asmfit = asm.fit(data)
    odf = asmfit.odf(sphere)
    odf_sh = asmfit.odf_sh()
    odf_from_sh = sh_to_sf(odf_sh, sphere, 6, basis_type=None, legacy=True)
    npt.assert_almost_equal(odf, odf_from_sh, 10)

    expected_phi = shore_matrix(radial_order=6, zeta=700, gtab=gtab)
    npt.assert_array_almost_equal(np.dot(expected_phi, asmfit.shore_coeff),
                                  asmfit.fitted_signal())

    directions, _, _ = peak_directions(odf, sphere, .35, 25)
    npt.assert_equal(len(directions), 2)
    npt.assert_almost_equal(angular_similarity(directions, golden_directions),
                            2, 1)

    # 5 subdivisions
    odf = asmfit.odf(sphere2)
    directions, _, _ = peak_directions(odf, sphere2, .35, 25)
    npt.assert_equal(len(directions), 2)
    npt.assert_almost_equal(angular_similarity(directions, golden_directions),
                            2, 1)

    sb_dummies = sticks_and_ball_dummies(gtab)
    for sbd in sb_dummies:
        data, golden_directions = sb_dummies[sbd]
        asmfit = asm.fit(data)
        odf = asmfit.odf(sphere2)
        directions, _, _ = peak_directions(odf, sphere2, .35, 25)
        if len(directions) <= 3:
            npt.assert_equal(len(directions), len(golden_directions))
        if len(directions) > 3:
            npt.assert_equal(gfa(odf) < 0.1, True)
Esempio n. 4
0
def test_shore_odf():
    gtab = get_isbi2013_2shell_gtab()

    # load symmetric 724 sphere
    sphere = get_sphere('symmetric724')

    # load icosahedron sphere
    sphere2 = create_unit_sphere(5)
    data, golden_directions = SticksAndBall(gtab,
                                            d=0.0015,
                                            S0=100,
                                            angles=[(0, 0), (90, 0)],
                                            fractions=[50, 50],
                                            snr=None)
    asm = ShoreModel(gtab,
                     radial_order=6,
                     zeta=700,
                     lambdaN=1e-8,
                     lambdaL=1e-8)
    # symmetric724
    asmfit = asm.fit(data)
    odf = asmfit.odf(sphere)
    odf_sh = asmfit.odf_sh()
    odf_from_sh = sh_to_sf(odf_sh, sphere, 6, basis_type=None)
    assert_almost_equal(odf, odf_from_sh, 10)

    directions, _, _ = peak_directions(odf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(angular_similarity(directions, golden_directions), 2,
                        1)

    # 5 subdivisions
    odf = asmfit.odf(sphere2)
    directions, _, _ = peak_directions(odf, sphere2, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(angular_similarity(directions, golden_directions), 2,
                        1)

    sb_dummies = sticks_and_ball_dummies(gtab)
    for sbd in sb_dummies:
        data, golden_directions = sb_dummies[sbd]
        asmfit = asm.fit(data)
        odf = asmfit.odf(sphere2)
        directions, _, _ = peak_directions(odf, sphere2, .35, 25)
        if len(directions) <= 3:
            assert_equal(len(directions), len(golden_directions))
        if len(directions) > 3:
            assert_equal(gfa(odf) < 0.1, True)
Esempio n. 5
0
def test_shore_fitting_constrain_e0():
    asm = ShoreModel(data.gtab, radial_order=data.radial_order,
                     zeta=data.zeta, lambdaN=data.lambdaN,
                     lambdaL=data.lambdaL,
                     constrain_e0=True)
    asmfit = asm.fit(data.S)
    assert_almost_equal(compute_e0(asmfit), 1)
def shore_odf(gtab, data, affine, mask, sphere):
    radial_order = 6
    zeta = 700
    lambdaN = 1e-8
    lambdaL = 1e-8
    model = ShoreModel(gtab, radial_order=radial_order, zeta=zeta, lambdaN=lambdaN, lambdaL=lambdaL)
    return model.fit(data).odf(sphere)
Esempio n. 7
0
def test_shore_fitting_constrain_e0():
    asm = ShoreModel(data.gtab, radial_order=data.radial_order,
                     zeta=data.zeta, lambdaN=data.lambdaN,
                     lambdaL=data.lambdaL,
                     constrain_e0=True)
    asmfit = asm.fit(data.S)
    npt.assert_almost_equal(compute_e0(asmfit), 1)
def dMRI2ODF_DTI(PATH):
    '''
    Input the dMRI data
    return the ODF
    '''
    print(PATH)
    if os.path.exists(PATH + 'processed_data.npz'):
        return None
    dMRI_path = PATH + 'data.nii.gz'
    mask_path = PATH + 'nodif_brain_mask.nii.gz'
    dMRI_img = nib.load(dMRI_path)
    dMRI_data = dMRI_img.get_fdata()
    mask_img = nib.load(mask_path)
    mask = mask_img.get_fdata()

    ########## subsample ##########
    # in the main paper, to train the full 3D brain
    # We downsample the data into around 32x32x32
    # If not downsample, it can process the full-size brain image
    # but cannot fit into GPU memory
    dMRI_data = dMRI_data[::4, ::4, ::4, ...]
    mask = mask[::4, ::4, ::4, ...]

    bval = PATH + "bvals"
    bvec = PATH + "bvecs"

    radial_order = 6
    zeta = 700
    lambdaN = 1e-8
    lambdaL = 1e-8

    ###### process the ODF data ######
    # size is 32x32x32x(362)
    gtab = gradient_table(bvals=bval, bvecs=bvec)
    asm = ShoreModel(gtab,
                     radial_order=radial_order,
                     zeta=zeta,
                     lambdaN=lambdaN,
                     lambdaL=lambdaL)
    asmfit = asm.fit(dMRI_data, mask=mask)
    sphere = get_sphere('symmetric362')
    dMRI_odf = asmfit.odf(sphere)
    dMRI_odf[dMRI_odf <= 0] = 0  # remove the numerical issue

    ###### process the DTI data ######
    # size is 32x32x32x(3x3)
    tenmodel = dti.TensorModel(gtab)
    dMRI_dti = tenmodel.fit(dMRI_data, mask)
    dMRI_dti = dMRI_dti.quadratic_form

    name = PATH.split('/')[2]  # here, might be affected by the path
    # change the [2] here for the correct index
    np.savez(PATH + 'processed_data.npz',
             DTI=dMRI_dti,
             ODF=dMRI_odf,
             mask=mask,
             name=name)

    return None
Esempio n. 9
0
def test_shore_odf():
    gtab = get_isbi2013_2shell_gtab()

    # load symmetric 724 sphere
    sphere = get_sphere('symmetric724')

    # load icosahedron sphere
    sphere2 = create_unit_sphere(5)
    data, golden_directions = SticksAndBall(gtab, d=0.0015,
                                            S0=100, angles=[(0, 0), (90, 0)],
                                            fractions=[50, 50], snr=None)
    asm = ShoreModel(gtab, radial_order=6,
                     zeta=700, lambdaN=1e-8, lambdaL=1e-8)
    # symmetric724
    asmfit = asm.fit(data)
    odf = asmfit.odf(sphere)
    odf_sh = asmfit.odf_sh()
    odf_from_sh = sh_to_sf(odf_sh, sphere, 6, basis_type=None)
    assert_almost_equal(odf, odf_from_sh, 10)


    directions, _ , _ = peak_directions(odf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(
        angular_similarity(directions, golden_directions), 2, 1)

    # 5 subdivisions
    odf = asmfit.odf(sphere2)
    directions, _ , _ = peak_directions(odf, sphere2, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(
        angular_similarity(directions, golden_directions), 2, 1)

    sb_dummies = sticks_and_ball_dummies(gtab)
    for sbd in sb_dummies:
        data, golden_directions = sb_dummies[sbd]
        asmfit = asm.fit(data)
        odf = asmfit.odf(sphere2)
        directions, _ , _ = peak_directions(odf, sphere2, .35, 25)
        if len(directions) <= 3:
            assert_equal(len(directions), len(golden_directions))
        if len(directions) > 3:
            assert_equal(gfa(odf) < 0.1, True)
Esempio n. 10
0
def test_multivox_shore():    
    gtab = get_3shell_gtab()

    data = np.random.random([20, 30, 1, gtab.gradients.shape[0]])
    radial_order = 4
    zeta = 700
    asm = ShoreModel(gtab, radial_order=radial_order, zeta=zeta, lambdaN=1e-8, lambdaL=1e-8)
    asmfit = asm.fit(data)
    c_shore=asmfit.shore_coeff
    assert_equal(c_shore.shape[0:3], data.shape[0:3])
    assert_equal(np.alltrue(np.isreal(c_shore)), True)
Esempio n. 11
0
def test_shore_fitting_no_constrain_e0():
    asm = ShoreModel(data.gtab,
                     radial_order=data.radial_order,
                     zeta=data.zeta,
                     lambdaN=data.lambdaN,
                     lambdaL=data.lambdaL)
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        asmfit = asm.fit(data.S)
    npt.assert_almost_equal(compute_e0(asmfit), 1)
Esempio n. 12
0
def shore_scalarmaps(data, gtab, outpath_fig, verbose=None):

    #bvecs[1:] = (bvecs[1:] /
    #             np.sqrt(np.sum(bvecs[1:] * bvecs[1:], axis=1))[:, None])
    #gtab = gradient_table(bvals, bvecs)
    if verbose:
        print('data.shape (%d, %d, %d, %d)' % data.shape)
    asm = ShoreModel(gtab)
    #Let’s just use only one slice only from the data.

    dataslice = data[30:70, 20:80, data.shape[2] // 2]
    #Fit the signal with the model and calculate the SHORE coefficients.

    asmfit = asm.fit(dataslice)
    #Calculate the analytical RTOP on the signal that corresponds to the integral of the signal.
    if verbose:
        print('Calculating... rtop_signal')
    rtop_signal = asmfit.rtop_signal()
    #Now we calculate the analytical RTOP on the propagator, that corresponds to its central value.

    if verbose:
        print('Calculating... rtop_pdf')
    rtop_pdf = asmfit.rtop_pdf()
    #In theory, these two measures must be equal, to show that we calculate the mean square error on this two measures.

    mse = np.sum((rtop_signal - rtop_pdf)**2) / rtop_signal.size
    if verbose:
        print("MSE = %f" % mse)
    MSE = 0.000000

    #Let’s calculate the analytical mean square displacement on the propagator.
    if verbose:
        print('Calculating... msd')
    msd = asmfit.msd()
    #Show the maps and save them to a file.

    fig = plt.figure(figsize=(6, 6))
    ax1 = fig.add_subplot(2, 2, 1, title='rtop_signal')
    ax1.set_axis_off()
    ind = ax1.imshow(rtop_signal.T, interpolation='nearest', origin='lower')
    plt.colorbar(ind)
    ax2 = fig.add_subplot(2, 2, 2, title='rtop_pdf')
    ax2.set_axis_off()
    ind = ax2.imshow(rtop_pdf.T, interpolation='nearest', origin='lower')
    plt.colorbar(ind)
    ax3 = fig.add_subplot(2, 2, 3, title='msd')
    ax3.set_axis_off()
    ind = ax3.imshow(msd.T, interpolation='nearest', origin='lower', vmin=0)
    plt.colorbar(ind)
    print("about to save")
    plt.savefig(outpath_fig)
    print("save done")
Esempio n. 13
0
def test_shore_positive_constrain():
    asm = ShoreModel(data.gtab,
                     radial_order=data.radial_order,
                     zeta=data.zeta,
                     lambdaN=data.lambdaN,
                     lambdaL=data.lambdaL,
                     constrain_e0=True,
                     positive_constraint=True,
                     pos_grid=11,
                     pos_radius=20e-03)
    asmfit = asm.fit(data.S)
    eap = asmfit.pdf_grid(11, 20e-03)
    assert_almost_equal(eap[eap < 0].sum(), 0, 3)
Esempio n. 14
0
def test_shore_positive_constrain():
    asm = ShoreModel(data.gtab,
                     radial_order=data.radial_order,
                     zeta=data.zeta,
                     lambdaN=data.lambdaN,
                     lambdaL=data.lambdaL,
                     constrain_e0=True,
                     positive_constraint=True,
                     pos_grid=11,
                     pos_radius=20e-03)
    asmfit = asm.fit(data.S)
    eap = asmfit.pdf_grid(11, 20e-03)
    assert_almost_equal(eap[eap < 0].sum(), 0, 3)
Esempio n. 15
0
def test_shore_positive_constrain():
    asm = ShoreModel(data.gtab,
                     radial_order=data.radial_order,
                     zeta=data.zeta,
                     lambdaN=data.lambdaN,
                     lambdaL=data.lambdaL,
                     constrain_e0=True,
                     positive_constraint=True,
                     pos_grid=11,
                     pos_radius=20e-03)
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        asmfit = asm.fit(data.S)
        eap = asmfit.pdf_grid(11, 20e-03)
    npt.assert_almost_equal(eap[eap < 0].sum(), 0, 3)
Esempio n. 16
0
def test_shore_metrics():
    fetch_taiwan_ntu_dsi()
    img, gtab = read_taiwan_ntu_dsi()

    mevals = np.array(([0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003]))
    angl = [(0, 0), (60, 0)]
    S, sticks = MultiTensor(gtab, mevals, S0=100, angles=angl,
                            fractions=[50, 50], snr=None)
    S = S / S[0, None].astype(np.float)

    radial_order = 8
    zeta = 800
    lambdaN = 1e-12
    lambdaL = 1e-12
    asm = ShoreModel(gtab, radial_order=radial_order, zeta=zeta, lambdaN=lambdaN, lambdaL=lambdaL)
    asmfit = asm.fit(S)
    c_shore= asmfit.shore_coeff

    cmat = SHOREmatrix(radial_order, zeta, gtab)
    S_reconst = np.dot(cmat, c_shore)
    nmse_signal = np.sqrt(np.sum((S - S_reconst) ** 2)) / (S.sum())
    assert_almost_equal(nmse_signal, 0.0, 4)

    mevecs2 = np.zeros((2, 3, 3))
    angl = np.array(angl)
    for i in range(2):
        mevecs2[i] = all_tensor_evecs(sticks[i]).T

    sphere = get_sphere('symmetric724')
    v = sphere.vertices
    radius = 10e-3
    pdf_shore = asmfit.pdf(v * radius)
    pdf_mt = multi_tensor_pdf(v * radius, [.5, .5], mevals=mevals, mevecs=mevecs2)
    nmse_pdf = np.sqrt(np.sum((pdf_mt - pdf_shore) ** 2)) / (pdf_mt.sum())
    assert_almost_equal(nmse_pdf, 0.0, 2)

    rtop_shore_signal = asmfit.rtop_signal()
    rtop_shore_pdf = asmfit.rtop_pdf()
    assert_almost_equal(rtop_shore_signal, rtop_shore_pdf, 9)
    rtop_mt = multi_tensor_rtop([.5, .5], mevals=mevals)
    assert_equal(rtop_mt/rtop_shore_signal < 1.12 and rtop_mt/rtop_shore_signal > 0.9 , True)
    
    msd_mt = multi_tensor_msd([.5, .5], mevals=mevals)
    msd_shore = asmfit.msd()
    assert_equal(msd_mt/msd_shore < 1.05 and msd_mt/msd_shore > 0.95 , True)
Esempio n. 17
0
def test_multivox_shore():
    gtab = get_3shell_gtab()

    data = np.random.random([20, 30, 1, gtab.gradients.shape[0]])
    radial_order = 4
    zeta = 700
    asm = ShoreModel(gtab,
                     radial_order=radial_order,
                     zeta=zeta,
                     lambdaN=1e-8,
                     lambdaL=1e-8)
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        asmfit = asm.fit(data)
    c_shore = asmfit.shore_coeff
    npt.assert_equal(c_shore.shape[0:3], data.shape[0:3])
    npt.assert_equal(np.alltrue(np.isreal(c_shore)), True)
Esempio n. 18
0
def test_shore_positive_constrain():
    gtab = get_gtab_taiwan_dsi()
    mevals = np.array(([0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003]))
    angl = [(0, 0), (60, 0)]
    S, sticks = MultiTensor(gtab, mevals, S0=100.0, angles=angl,
                            fractions=[50, 50], snr=None)

    radial_order = 6
    zeta = 700
    lambdaN = 1e-12
    lambdaL = 1e-12

    asm = ShoreModel(gtab, radial_order=radial_order,
                     zeta=zeta, lambdaN=lambdaN, lambdaL=lambdaL,
                     constrain_e0=True, positive_constraint=True, pos_grid=11, pos_radius=20e-03)

    asmfit = asm.fit(S)
    eap = asmfit.pdf_grid(11, 20e-03)
    assert_equal(eap[eap<0].sum(),0)
Esempio n. 19
0
num_vox = 5
odf_stack = np.zeros((num_vox, 1, 1, 724))

for i in range(num_vox):
    radial_order = 6
    lambdaN = 1e-8
    lambdaL = 1e-8
    print('Zeta Value: \n')
    print(zeta)
    asm = ShoreModel(gtab,
                     radial_order=radial_order,
                     zeta=zeta,
                     lambdaN=lambdaN,
                     lambdaL=lambdaL)

    asmfit = asm.fit(one_vox)

    sphere = get_sphere('symmetric724')

    odf = asmfit.odf(sphere)
    odf = np.reshape(odf, [10, 1, 1, 724])

    odf_stack[i, :, :, :] = odf[0, :, :, :]
    print('odf.shape (%d, %d, %d, %d)' % odf.shape)
    zeta = zeta + 200

# Enables/disables interactive visualization
interactive = True
ren = window.Renderer()
sfu = actor.odf_slicer(odf_stack[0:5, None, 0],
                       sphere=sphere,
Esempio n. 20
0
        mask = sitk.GetArrayFromImage(mask)
        print(mask.shape)

    # fit selected model
    if model_type == '3D-SHORE':
        print('Fitting 3D-SHORE')
        print("radial_order: ", radial_order)
        print("zeta: ", zeta)
        print("lambdaN: ", lambdaN)
        print("lambdaL: ", lambdaL)
        model = ShoreModel(gtab,
                           radial_order=radial_order,
                           zeta=zeta,
                           lambdaN=lambdaN,
                           lambdaL=lambdaL)
        asmfit = model.fit(data)
        odf = asmfit.odf(sphere)
    elif model_type == 'CSA-QBALL':
        print('Fitting CSA-QBALL')
        print("sh_order: ", sh_order)
        print("smooth: ", smooth)
        model = CsaOdfModel(gtab=gtab, sh_order=sh_order, smooth=smooth)
        odf = model.fit(data, mask=mask).odf(sphere)
        odf = np.clip(odf, 0, np.max(odf, -1)[..., None])
    elif model_type == 'SFM':
        print('Fitting SFM')
        print("fa_thr: ", fa_thr)
        response, ratio = auto_response(gtab,
                                        data,
                                        roi_radius=10,
                                        fa_thr=fa_thr)
Esempio n. 21
0
For details regarding these four parameters see (Cheng J. et al, MICCAI workshop 2011) and 
(Merlet S. et al, Medical Image Analysis 2013).
"""

radial_order = 6
zeta = 700
lambdaN=1e-8
lambdaL=1e-8
asm = ShoreModel(gtab, radial_order=radial_order, zeta=zeta, lambdaN=lambdaN, lambdaL=lambdaL)

"""
Fit the SHORE model to the data
"""

asmfit = asm.fit(data_small)

"""
Load an odf reconstruction sphere
"""

sphere = get_sphere('symmetric724')

"""
Compute the ODF  
"""

odf = asmfit.odf(sphere)
print('odf.shape (%d, %d, %d)' % odf.shape)

"""
Esempio n. 22
0
def test_shore_metrics():
    gtab = get_gtab_taiwan_dsi()
    mevals = np.array(([0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003]))
    angl = [(0, 0), (60, 0)]
    S, sticks = MultiTensor(gtab, mevals, S0=100.0, angles=angl,
                            fractions=[50, 50], snr=None)

    # test shore_indices
    n = 7
    l = 6
    m = -4
    radial_order, c = shore_order(n, l, m)
    n2, l2, m2 = shore_indices(radial_order, c)
    assert_equal(n, n2)
    assert_equal(l, l2)
    assert_equal(m, m2)

    radial_order = 6
    c = 41
    n, l, m = shore_indices(radial_order, c)
    radial_order2, c2 = shore_order(n, l, m)
    assert_equal(radial_order, radial_order2)
    assert_equal(c, c2)

    # since we are testing without noise we can use higher order and lower lambdas, with respect to the default.
    radial_order = 8
    zeta = 700
    lambdaN = 1e-12
    lambdaL = 1e-12
    asm = ShoreModel(gtab, radial_order=radial_order,
                     zeta=zeta, lambdaN=lambdaN, lambdaL=lambdaL)
    asmfit = asm.fit(S)
    c_shore = asmfit.shore_coeff

    cmat = shore_matrix(radial_order, zeta, gtab)
    S_reconst = np.dot(cmat, c_shore)

    # test the signal reconstruction
    S = S / S[0]
    nmse_signal = np.sqrt(np.sum((S - S_reconst) ** 2)) / (S.sum())
    assert_almost_equal(nmse_signal, 0.0, 4)

    # test if the analytical integral of the pdf is equal to one
    integral = 0
    for n in range(int((radial_order)/2 +1)):
        integral += c_shore[n] * (np.pi**(-1.5) * zeta **(-1.5) * genlaguerre(n,0.5)(0)) ** 0.5

    assert_almost_equal(integral, 1.0, 10)

    # test if the integral of the pdf calculated on a discrete grid is equal to one
    pdf_discrete = asmfit.pdf_grid(17, 40e-3)
    integral = pdf_discrete.sum()
    assert_almost_equal(integral, 1.0, 1)

    # compare the shore pdf with the ground truth multi_tensor pdf

    sphere = get_sphere('symmetric724')
    v = sphere.vertices
    radius = 10e-3
    pdf_shore = asmfit.pdf(v * radius)
    pdf_mt = multi_tensor_pdf(v * radius, mevals=mevals,
                              angles=angl, fractions= [50, 50])
    nmse_pdf = np.sqrt(np.sum((pdf_mt - pdf_shore) ** 2)) / (pdf_mt.sum())
    assert_almost_equal(nmse_pdf, 0.0, 2)

    # compare the shore rtop with the ground truth multi_tensor rtop
    rtop_shore_signal = asmfit.rtop_signal()
    rtop_shore_pdf = asmfit.rtop_pdf()
    assert_almost_equal(rtop_shore_signal, rtop_shore_pdf, 9)
    rtop_mt = multi_tensor_rtop([.5, .5], mevals=mevals)
    assert_equal(rtop_mt / rtop_shore_signal <1.10 and rtop_mt / rtop_shore_signal > 0.95, True)

    # compare the shore msd with the ground truth multi_tensor msd
    msd_mt = multi_tensor_msd([.5, .5], mevals=mevals)
    msd_shore = asmfit.msd()
    assert_equal(msd_mt / msd_shore < 1.05 and msd_mt / msd_shore > 0.95, True)
Esempio n. 23
0
print('Output Data all loaded and ready for use ...')

print('Fitting Shore to both models')

radial_order = 6
zeta = 700
lambdaN = 1e-8
lambdaL = 1e-8
asm = ShoreModel(gtab,
                 radial_order=radial_order,
                 zeta=zeta,
                 lambdaN=lambdaN,
                 lambdaL=lambdaL)

asmfit = asm.fit(actual_data)

print('Shore Model Coeffs Generated ...')

print('Transforming object shape to save to a .mat file')

shore_input_matrix = np.zeros((57267, 50))

for i in range(0, 57267):

    temp_shore_coeffs = asmfit.fit_array[i]._shore_coef
    shore_input_matrix[i, :] = temp_shore_coeffs

    if (i % 1000 == 0):
        print(i)
Esempio n. 24
0
"""

radial_order = 6
zeta = 700
lambdaN = 1e-8
lambdaL = 1e-8
asm = ShoreModel(gtab,
                 radial_order=radial_order,
                 zeta=zeta,
                 lambdaN=lambdaN,
                 lambdaL=lambdaL)
"""
Fit the SHORE model to the data
"""

asmfit = asm.fit(data_small)
"""
Load an odf reconstruction sphere
"""

sphere = get_sphere('symmetric724')
"""
Compute the ODFs
"""

odf = asmfit.odf(sphere)
print('odf.shape (%d, %d, %d)' % odf.shape)
"""
Display the ODFs
"""
Esempio n. 25
0
def prepare_data(csv_file, label_name):

    Names = []
    labels = []
    Visit_ = []

    # csv_file = 'data/ad_data/adrc-subject-list.csv'
    with open(csv_file, 'rb') as f:
        reader = csv.reader(f)
        count = 0

        for row in reader:
            if count == 0:
                # label_idx = row.index(label_name)  # normal should use this, APOE is different
                label_idx1 = 3
                label_idx2 = 4
                count = count + 1
                continue
            else:
                Names.append(row[0])
                labels.append(row[label_idx1] == '4' or row[label_idx2] == '4')
                # labels.append(1*(row[2]=="Male"))
                count = count + 1
    # Labels = np.zeros([len(labels) , 2])
    # for labelid in range(len(labels)):
    #     Labels[ labelid , labels[labelid] ] = 1
    # pdb.set_trace()

    spd_data_folder = "data/ad_data/data/"
    spd_data_name = "/cor_DTI_SPD.nii"
    dMRI_data_name = "/dMRI.nii.gz"

    track_names = [
        "fmajor_PP.avg33_mni_bbr_track_image.nii.gz",
        "fminor_PP.avg33_mni_bbr_track_image.nii.gz",
        "lh.atr_PP.avg33_mni_bbr_track_image.nii.gz",
        "lh.cab_PP.avg33_mni_bbr_track_image.nii.gz",
        "lh.ccg_PP.avg33_mni_bbr_track_image.nii.gz",
        "lh.cst_AS.avg33_mni_bbr_track_image.nii.gz",
        "lh.ilf_AS.avg33_mni_bbr_track_image.nii.gz",
        "lh.slfp_PP.avg33_mni_bbr_track_image.nii.gz",
        "lh.slft_PP.avg33_mni_bbr_track_image.nii.gz",
        "lh.unc_AS.avg33_mni_bbr_track_image.nii.gz",
        "rh.atr_PP.avg33_mni_bbr_track_image.nii.gz",
        "rh.cab_PP.avg33_mni_bbr_track_image.nii.gz",
        "rh.ccg_PP.avg33_mni_bbr_track_image.nii.gz",
        "rh.cst_AS.avg33_mni_bbr_track_image.nii.gz",
        "rh.ilf_AS.avg33_mni_bbr_track_image.nii.gz",
        "rh.slfp_PP.avg33_mni_bbr_track_image.nii.gz",
        "rh.slft_PP.avg33_mni_bbr_track_image.nii.gz",
        "rh.unc_AS.avg33_mni_bbr_track_image.nii.gz",
    ]

    Traces = [[] for _ in range(len(track_names))]
    Traces_ODF = [[] for _ in range(len(track_names))]
    for pid in range(len(Names)):
        name = Names[pid]
        for vi in ["_v2", "_v3", "_v1", "_v4"]:
            spd_path = spd_data_folder + name + vi + spd_data_name
            if os.path.isfile(spd_path):
                break
        if not os.path.isfile(spd_path):
            print(
                "There's something wrong in this dataset, the data is not v1/v2/v3."
            )
            exit()
        Visit_.append(vi)
        spd_img = nib.load(spd_path)
        spd_data = spd_img.get_data()
        mtx_whole = vec2mtx(spd_data)

        dMRI_path = spd_data_folder + name + vi + dMRI_data_name
        dMRI_img = nib.load(dMRI_path)
        dMRI_data = dMRI_img.get_data()

        ############### ODF
        radial_order = 6
        zeta = 700
        lambdaN = 1e-8
        lambdaL = 1e-8
        bval = "./data/ad_data/Bval_vec/dti_bvals.bval"
        bvec = "./data/ad_data/Bval_vec/" + name + vi + "/bvecs_eddy.rotated.bvecs"
        gtab = gtab = gradient_table(bvals=bval, bvecs=bvec)
        asm = ShoreModel(gtab,
                         radial_order=radial_order,
                         zeta=zeta,
                         lambdaN=lambdaN,
                         lambdaL=lambdaL)

        ############### ODF

        for track_id in range(len(track_names)):
            track_sub_name = track_names[track_id]
            # for vi in ["_v2","_v3","_v1","_v4"]:  ########## \tab for the rest 3 lines
            track_path = spd_data_folder + name + vi + "/" + track_sub_name
            # if os.path.isfile(track_path):
            #     break
            if os.path.isfile(track_path):
                Pos = read_fiber(track_path)
                # pdb.set_trace()
                minx = min(Pos[:, 0])
                maxx = max(Pos[:, 0])
                miny = min(Pos[:, 1])
                maxy = max(Pos[:, 1])
                minz = min(Pos[:, 2])
                maxz = max(Pos[:, 2])
                # pdb.set_trace()
                asmfit = asm.fit(dMRI_data[minx:maxx + 1, miny:maxy + 1,
                                           minz:maxz + 1])
                # pdb.set_trace()
                sphere = get_sphere('symmetric724')
                dMRI_odf = asmfit.odf(sphere)
                # pdb.set_trace()
                Traces_ODF[track_id].append(dMRI_odf[(Pos[:, 0] - minx,
                                                      Pos[:, 1] - miny,
                                                      Pos[:, 2] - minz)])
                Traces[track_id].append(mtx_whole[(Pos[:, 0], Pos[:,
                                                                  1], Pos[:,
                                                                          2])])
            else:
                Traces[track_id].append([])
    Traces = np.asarray(Traces)
    # Traces_ODF = None
    Traces_ODF = np.asarray(Traces_ODF)
    Labels = np.asarray(labels)
    # pdb.set_trace()
    return Traces, Traces_ODF, Labels, track_names, Names, Visit_
Esempio n. 26
0
Instantiate the Model.
"""

asm = ShoreModel(gtab)

"""
Let's just use only one slice only from the data.
"""

dataslice = data[30:70, 20:80, data.shape[2] // 2]

"""
Fit the signal with the model and calculate the SHORE coefficients.
"""

asmfit = asm.fit(dataslice)

"""
Calculate the analytical rtop on the signal
that corresponds to the integral of the signal.
"""

print('Calculating... rtop_signal')
rtop_signal = asmfit.rtop_signal()

"""
Now we calculate the analytical rtop on the propagator,
that corresponds to its central value.
"""

print('Calculating... rtop_pdf')
Esempio n. 27
0
    # fit selected model
    sh_coeffs = None
    odf = None
    if model_type == '3D-SHORE':
        print('Fitting 3D-SHORE')
        print("radial_order: ", radial_order)
        print("zeta: ", zeta)
        print("lambdaN: ", lambdaN)
        print("lambdaL: ", lambdaL)
        model = ShoreModel(gtab,
                           radial_order=radial_order,
                           zeta=zeta,
                           lambdaN=lambdaN,
                           lambdaL=lambdaL)
        asmfit = model.fit(data)
        odf = asmfit.odf(sphere)
    elif model_type == 'CSA-QBALL':
        print('Fitting CSA-QBALL')
        print("sh_order: ", sh_order)
        print("smooth: ", smooth)
        model = CsaOdfModel(gtab=gtab, sh_order=sh_order, smooth=smooth)
        sh_coeffs = model.fit(data, mask=mask).shm_coeff
    elif model_type == 'SFM':
        print('Fitting SFM')
        print("fa_thr: ", fa_thr)
        response, ratio = auto_response(gtab,
                                        data,
                                        roi_radius=10,
                                        fa_thr=fa_thr)
        model = sfm.SparseFascicleModel(gtab,
def dMRI2ODF_DTI(PATH):
    '''
    Input the dMRI data
    return the ODF
    '''
    dMRI_path = PATH + 'data.nii.gz'
    mask_path = PATH + 'nodif_brain_mask.nii.gz'
    dMRI_img = nib.load(dMRI_path)
    dMRI_data = dMRI_img.get_fdata()
    mask_img = nib.load(mask_path)
    mask = mask_img.get_fdata()

    ########## subsample ##########
    # dMRI_data = dMRI_data[45:-48,50:-65,51:-54,...]
    # mask = mask[45:-48,50:-65,51:-54]
    # breakpoint()
    dMRI_data = dMRI_data[:, 87, ...]
    mask = mask[:, 87, ...]

    for cnt in range(10):
        fig = plt.imshow(dMRI_data[:, :, cnt].transpose(1, 0),
                         cmap='Greys',
                         interpolation='nearest')
        plt.axis('off')
        # plt.imshow(dMRI_data[:,15,:,cnt].transpose(1,0),cmap='Greys')
        plt.savefig(str(cnt) + '.png',
                    bbox_inches='tight',
                    dpi=300,
                    transparent=True,
                    pad_inches=0)

    # breakpoint()
    bval = PATH + "bvals"
    bvec = PATH + "bvecs"

    radial_order = 6
    zeta = 700
    lambdaN = 1e-8
    lambdaL = 1e-8

    gtab = gradient_table(bvals=bval, bvecs=bvec)
    asm = ShoreModel(gtab,
                     radial_order=radial_order,
                     zeta=zeta,
                     lambdaN=lambdaN,
                     lambdaL=lambdaL)
    asmfit = asm.fit(dMRI_data, mask=mask)
    sphere = get_sphere('symmetric362')
    dMRI_odf = asmfit.odf(sphere)
    dMRI_odf[dMRI_odf <= 0] = 0

    tenmodel = dti.TensorModel(gtab)
    tenfit = tenmodel.fit(dMRI_data, mask)
    dMRI_dti = tenfit.quadratic_form

    FA = fractional_anisotropy(tenfit.evals)
    FA[np.isnan(FA)] = 0
    FA = np.clip(FA, 0, 1)
    RGB = color_fa(FA, tenfit.evecs)

    evals = tenfit.evals + 1e-20
    evecs = tenfit.evecs
    cfa = RGB + 1e-20
    cfa /= cfa.max()

    evals = np.expand_dims(evals, 2)
    evecs = np.expand_dims(evecs, 2)
    cfa = np.expand_dims(cfa, 2)

    ren = window.Scene()
    sphere = get_sphere('symmetric362')
    ren.add(
        actor.tensor_slicer(evals,
                            evecs,
                            scalar_colors=cfa,
                            sphere=sphere,
                            scale=0.5))
    window.record(ren,
                  n_frames=1,
                  out_path='../data/tensor.png',
                  size=(5000, 5000))

    odf_ = dMRI_odf

    ren = window.Scene()
    sfu = actor.odf_slicer(np.expand_dims(odf_, 2),
                           sphere=sphere,
                           colormap="plasma",
                           scale=0.5)

    ren.add(sfu)
    window.record(ren,
                  n_frames=1,
                  out_path='../data/odfs.png',
                  size=(5000, 5000))

    return None
Esempio n. 29
0
    if mask is not None:
        mask = sitk.GetArrayFromImage(mask)
        print(mask.shape)


    # fit selected model
    sh_coeffs = None
    odf = None
    if model_type == '3D-SHORE':
        print('Fitting 3D-SHORE')
        print("radial_order: ", radial_order)
        print("zeta: ", zeta)
        print("lambdaN: ", lambdaN)
        print("lambdaL: ", lambdaL)
        model = ShoreModel(gtab, radial_order=radial_order, zeta=zeta, lambdaN=lambdaN, lambdaL=lambdaL)
        asmfit = model.fit(data)
        odf = asmfit.odf(sphere)
    elif model_type == 'CSA-QBALL':
        print('Fitting CSA-QBALL')
        print("sh_order: ", sh_order)
        print("smooth: ", smooth)
        model = CsaOdfModel(gtab=gtab, sh_order=sh_order, smooth=smooth)
        sh_coeffs = model.fit(data, mask=mask).shm_coeff
    elif model_type == 'SFM':
        print('Fitting SFM')
        print("fa_thr: ", fa_thr)
        response, ratio = auto_response(gtab, data, roi_radius=10, fa_thr=fa_thr)
        model = sfm.SparseFascicleModel(gtab, sphere=sphere,
                                        l1_ratio=0.5, alpha=0.001,
                                        response=response[0])
        odf = model.fit(data, mask=mask).odf(sphere)
Esempio n. 30
0
zeta = 150

mse_vol_stack = np.zeros((dims[0], dims[1], dims[2], 5))

for i in range(5):

    radial_order = 6
    lambdaN = 1e-8
    lambdaL = 1e-8
    asm = ShoreModel(gtab,
                     radial_order=radial_order,
                     zeta=zeta,
                     lambdaN=lambdaN,
                     lambdaL=lambdaL)

    asmfit = asm.fit(nifti_img, mask)

    print('Shore Model Coeffs Generated ... \n')

    print('Reconstructing Signal \n')
    signal_recon = asmfit.fitted_signal()

    mse_volume = np.zeros((dims[0], dims[1], dims[2]))

    for x in range(dims[0]):
        for y in range(dims[1]):
            for z in range(dims[2]):

                if mask[x, y, z] == 1:
                    orig_sig = nifti_img[x, y, z, :]
                    recon_sig = signal_recon[x, y, z, :]
                         min_separation_angle=25,
                         mask=mask,
                         return_odf=False,
                         normalize_peaks=True)
 
 GFA = csapeaks.gfa
 GFA_img = nib.Nifti1Image(GFA.astype(np.float32), affine)
 print GFA.shape
 nib.save(GFA_img, os.getcwd()+'/zhibiao/'+f_name+'_GFA.nii.gz')
 print('Saving "GFA.nii.gz" sucessful.')
 
 
 from dipy.reconst.shore import ShoreModel
 asm = ShoreModel(gtab)
 print('Calculating...SHORE msd')
 asmfit = asm.fit(data,mask)
 msd = asmfit.msd()
 msd[np.isnan(msd)] = 0
 
 #print GFA[:,:,slice].T
 print('Saving msd_img.png')
 print msd.shape
 msd_img = nib.Nifti1Image(msd.astype(np.float32), affine)
 nib.save(msd_img, os.getcwd()+'/zhibiao/'+f_name+'_MSD.nii.gz')
 
 """Rtop """
 print('Calculating... rtop_signal')
 rtop_signal = asmfit.rtop_signal()
 rtop_signal[np.isnan(rtop_signal)] = 0
 #print GFA[:,:,slice].T
 print('Saving rtop_signal_img.png')
Esempio n. 32
0
# load dmri data
print("Loading data and mask.")
data = nib.load(data_path).get_data()
print("Data shape: ", data.shape)

# load mask
mask = nib.load(mask_path).get_data()
print("Mask shape: ", mask.shape)

st = time.time()
radial_border = 4

print(
    "Started fitting SHORE model with radial_border={}".format(radial_border))
asm = ShoreModel(gtab, radial_order=radial_border)
asmfit = asm.fit(data, mask)
shore_coeff = asmfit.shore_coeff
print("SHORE coefficients shape: ", shore_coeff.shape)

# replace nan with 0
print("Replacing with nan with 0. This happens because of inaccurate mask.")
shore_coeff = np.nan_to_num(shore_coeff, 0)

print("Fitting time: {:.5f}".format(time.time() - st))

save_path = join(
    exp_dir, subj_id,
    'shore_features/shore_coefficients_radial_border_{}.npz'.format(
        radial_border))
np.savez(save_path, data=shore_coeff)
plt.imshow(nifti_img[:, :, axial_middle, 10].T, cmap='gray', origin='lower')
plt.savefig('vishabyte_mid_axial_slices.png', bbox_inches='tight')

print('Working on fitting SHORE to the Data \n')
radial_order = 6
zeta = 3000
lambdaN = 1e-12
lambdaL = 1e-12
asm = ShoreModel(gtab,
                 radial_order=radial_order,
                 zeta=zeta,
                 lambdaN=lambdaN,
                 lambdaL=lambdaL)

mask = nifti_img[:, :, :, 0]
asmfit = asm.fit(log_nifti_img, mask)

print('Shore Model Coeffs Generated ... \n')

print('Reconstructing Signal \n')

signal_recon = asmfit.fitted_signal()

print('Signal Reconstructed \n')

shore_input_matrix = np.zeros((dims[0], dims[1], dims[2], 50))

for i in range(0, dims[0]):
    for j in range(0, dims[1]):
        for k in range(0, dims[2]):
            if (mask[i, j, k] == 1):
Esempio n. 34
0
print('Data all loaded and ready for use')

print('data.shape (%d, %d)' % actual_data.shape)

radial_order = 6
zeta = 700
lambdaN = 1e-8
lambdaL = 1e-8
asm = ShoreModel(gtab,
                 radial_order=radial_order,
                 zeta=zeta,
                 lambdaN=lambdaN,
                 lambdaL=lambdaL)

asmfit = asm.fit(actual_data)

print('Shore Model Coeffs Generated ...')

print('Transforming object shape to save to a .mat file')

shore_input_matrix = np.zeros((57267, 50))

for i in range(0, 57267):

    temp_shore_coeffs = asmfit.fit_array[i]._shore_coef
    shore_input_matrix[i, :] = temp_shore_coeffs

    if (i % 1000 == 0):
        print(i)
Esempio n. 35
0
def dodata(f_name, data_path):
    dipy_home = pjoin(os.path.expanduser('~'), 'dipy_data')
    folder = pjoin(dipy_home, data_path)
    fraw = pjoin(folder, f_name + '.nii.gz')
    fbval = pjoin(folder, f_name + '.bval')
    fbvec = pjoin(folder, f_name + '.bvec')
    flabels = pjoin(folder, f_name + '.nii-label.nii.gz')

    bvals, bvecs = read_bvals_bvecs(fbval, fbvec)
    gtab = gradient_table(bvals, bvecs)

    img = nib.load(fraw)
    data = img.get_data()
    affine = img.get_affine()

    label_img = nib.load(flabels)
    labels = label_img.get_data()
    lap = through_label_sl.label_position(labels, labelValue=1)
    dataslice = data[40:80, 20:80, lap[2][2] / 2]
    #print lap[2][2]/2

    #get_csd_gfa(f_name,data,gtab,dataslice)

    maskdata, mask = median_otsu(data,
                                 2,
                                 1,
                                 False,
                                 vol_idx=range(10, 50),
                                 dilate=2)  #不去背景
    """ get fa and tensor evecs and ODF"""
    from dipy.reconst.dti import TensorModel, mean_diffusivity
    tenmodel = TensorModel(gtab)
    tenfit = tenmodel.fit(data, mask)

    sphere = get_sphere('symmetric724')

    FA = fractional_anisotropy(tenfit.evals)
    FA[np.isnan(FA)] = 0

    np.save(os.getcwd() + '\zhibiao' + f_name + '_FA.npy', FA)
    fa_img = nib.Nifti1Image(FA.astype(np.float32), affine)
    nib.save(fa_img, os.getcwd() + '\zhibiao' + f_name + '_FA.nii.gz')
    print('Saving "DTI_tensor_fa.nii.gz" sucessful.')
    evecs_img = nib.Nifti1Image(tenfit.evecs.astype(np.float32), affine)
    nib.save(evecs_img,
             os.getcwd() + '\zhibiao' + f_name + '_DTI_tensor_evecs.nii.gz')
    print('Saving "DTI_tensor_evecs.nii.gz" sucessful.')
    MD1 = mean_diffusivity(tenfit.evals)
    nib.save(nib.Nifti1Image(MD1.astype(np.float32), img.get_affine()),
             os.getcwd() + '\zhibiao' + f_name + '_MD.nii.gz')

    #tensor_odfs = tenmodel.fit(data[20:50, 55:85, 38:39]).odf(sphere)
    #from dipy.reconst.odf import gfa
    #dti_gfa=gfa(tensor_odfs)

    wm_mask = (np.logical_or(FA >= 0.4,
                             (np.logical_and(FA >= 0.15, MD >= 0.0011))))

    response = recursive_response(gtab,
                                  data,
                                  mask=wm_mask,
                                  sh_order=8,
                                  peak_thr=0.01,
                                  init_fa=0.08,
                                  init_trace=0.0021,
                                  iter=8,
                                  convergence=0.001,
                                  parallel=False)
    from dipy.reconst.csdeconv import ConstrainedSphericalDeconvModel
    csd_model = ConstrainedSphericalDeconvModel(gtab, response)

    #csd_fit = csd_model.fit(data)

    from dipy.direction import peaks_from_model

    csd_peaks = peaks_from_model(model=csd_model,
                                 data=data,
                                 sphere=sphere,
                                 relative_peak_threshold=.5,
                                 min_separation_angle=25,
                                 parallel=False)

    GFA = csd_peaks.gfa

    nib.save(GFA, os.getcwd() + '\zhibiao' + f_name + '_MSD.nii.gz')
    print('Saving "GFA.nii.gz" sucessful.')

    from dipy.reconst.shore import ShoreModel
    asm = ShoreModel(gtab)
    print('Calculating...SHORE msd')
    asmfit = asm.fit(data, mask)
    msd = asmfit.msd()
    msd[np.isnan(msd)] = 0

    #print GFA[:,:,slice].T
    print('Saving msd_img.png')
    nib.save(msd, os.getcwd() + '\zhibiao' + f_name + '_GFA.nii.gz')
Esempio n. 36
0
print('Data all loaded and ready for use')

print('data.shape (%d, %d)' % actual_data.shape)

radial_order = 8
zeta = 700
lambdaN = 1e-8
lambdaL = 1e-8
asm = ShoreModel(gtab,
                 radial_order=radial_order,
                 zeta=zeta,
                 lambdaN=lambdaN,
                 lambdaL=lambdaL)

asmfit = asm.fit(actual_data)

print('Shore Model Coeffs Generated ...')

print('Transforming object shape to save to a .mat file')

shore_input_matrix = np.zeros((57267, 95))

for i in range(0, 57267):

    temp_shore_coeffs = asmfit.fit_array[i]._shore_coef
    shore_input_matrix[i, :] = temp_shore_coeffs

    if (i % 1000 == 0):
        print(i)
Esempio n. 37
0
print('data.shape (%d, %d, %d, %d)' % data.shape)
"""
Instantiate the Model.
"""

asm = ShoreModel(gtab)
"""
Let's just use only one slice only from the data.
"""

dataslice = data[30:70, 20:80, data.shape[2] // 2]
"""
Fit the signal with the model and calculate the SHORE coefficients.
"""

asmfit = asm.fit(dataslice)
"""
Calculate the analytical RTOP on the signal
that corresponds to the integral of the signal.
"""

print('Calculating... rtop_signal')
rtop_signal = asmfit.rtop_signal()
"""
Now we calculate the analytical RTOP on the propagator,
that corresponds to its central value.
"""

print('Calculating... rtop_pdf')
rtop_pdf = asmfit.rtop_pdf()
"""
Esempio n. 38
0
def test_shore_metrics():
    gtab = get_gtab_taiwan_dsi()
    mevals = np.array(([0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003]))
    angl = [(0, 0), (60, 0)]
    S, _ = multi_tensor(gtab, mevals, S0=100.0, angles=angl,
                        fractions=[50, 50], snr=None)

    # test shore_indices
    n = 7
    l = 6
    m = -4
    radial_order, c = shore_order(n, l, m)
    n2, l2, m2 = shore_indices(radial_order, c)
    npt.assert_equal(n, n2)
    npt.assert_equal(l, l2)
    npt.assert_equal(m, m2)

    radial_order = 6
    c = 41
    n, l, m = shore_indices(radial_order, c)
    radial_order2, c2 = shore_order(n, l, m)
    npt.assert_equal(radial_order, radial_order2)
    npt.assert_equal(c, c2)

    npt.assert_raises(ValueError, shore_indices, 6, 100)
    npt.assert_raises(ValueError, shore_order, m, n, l)
    # since we are testing without noise we can use higher order and lower
    # lambdas, with respect to the default.
    radial_order = 8
    zeta = 700
    lambdaN = 1e-12
    lambdaL = 1e-12
    asm = ShoreModel(gtab, radial_order=radial_order,
                     zeta=zeta, lambdaN=lambdaN, lambdaL=lambdaL)
    asmfit = asm.fit(S)
    c_shore = asmfit.shore_coeff

    cmat = shore_matrix(radial_order, zeta, gtab)
    S_reconst = np.dot(cmat, c_shore)

    # test the signal reconstruction
    S = S / S[0]
    nmse_signal = np.sqrt(np.sum((S - S_reconst) ** 2)) / (S.sum())
    npt.assert_almost_equal(nmse_signal, 0.0, 4)

    # test if the analytical integral of the pdf is equal to one
    integral = 0
    for n in range(int((radial_order)/2 + 1)):
        integral += c_shore[n] * (np.pi**(-1.5) * zeta ** (-1.5) *
                                  genlaguerre(n, 0.5)(0)) ** 0.5

    npt.assert_almost_equal(integral, 1.0, 10)

    # test if the integral of the pdf calculated on a discrete grid is
    # equal to one
    pdf_discrete = asmfit.pdf_grid(17, 40e-3)
    integral = pdf_discrete.sum()
    npt.assert_almost_equal(integral, 1.0, 1)

    # compare the shore pdf with the ground truth multi_tensor pdf

    sphere = get_sphere('symmetric724')
    v = sphere.vertices
    radius = 10e-3
    pdf_shore = asmfit.pdf(v * radius)
    pdf_mt = multi_tensor_pdf(v * radius, mevals=mevals,
                              angles=angl, fractions=[50, 50])

    nmse_pdf = np.sqrt(np.sum((pdf_mt - pdf_shore) ** 2)) / (pdf_mt.sum())
    npt.assert_almost_equal(nmse_pdf, 0.0, 2)

    # compare the shore rtop with the ground truth multi_tensor rtop
    rtop_shore_signal = asmfit.rtop_signal()
    rtop_shore_pdf = asmfit.rtop_pdf()
    npt.assert_almost_equal(rtop_shore_signal, rtop_shore_pdf, 9)
    rtop_mt = multi_tensor_rtop([.5, .5], mevals=mevals)
    npt.assert_equal(rtop_mt / rtop_shore_signal < 1.10 and
                     rtop_mt / rtop_shore_signal > 0.95, True)

    # compare the shore msd with the ground truth multi_tensor msd
    msd_mt = multi_tensor_msd([.5, .5], mevals=mevals)
    msd_shore = asmfit.msd()
    npt.assert_equal(msd_mt / msd_shore < 1.05 and msd_mt / msd_shore > 0.95,
                     True)
def dodata(f_name,data_path):
    dipy_home = pjoin(os.path.expanduser('~'), 'dipy_data')
    folder = pjoin(dipy_home, data_path)
    fraw = pjoin(folder, f_name+'.nii.gz')
    fbval = pjoin(folder, f_name+'.bval')
    fbvec = pjoin(folder, f_name+'.bvec')
    flabels = pjoin(folder, f_name+'.nii-label.nii.gz')
    
    bvals, bvecs = read_bvals_bvecs(fbval, fbvec)
    gtab = gradient_table(bvals, bvecs)
    
    img = nib.load(fraw)
    data = img.get_data()
    affine = img.get_affine()
    
    label_img = nib.load(flabels)
    labels=label_img.get_data()
    lap=through_label_sl.label_position(labels, labelValue=1)    
    dataslice = data[40:80, 20:80, lap[2][2] / 2]
    #print lap[2][2]/2
    
    #get_csd_gfa(f_name,data,gtab,dataslice)
    
    maskdata, mask = median_otsu(data, 2, 1, False, vol_idx=range(10, 50), dilate=2) #不去背景
    
    """ get fa and tensor evecs and ODF"""
    from dipy.reconst.dti import TensorModel,mean_diffusivity
    tenmodel = TensorModel(gtab)
    tenfit = tenmodel.fit(data, mask)
    
    sphere = get_sphere('symmetric724')
    
    FA = fractional_anisotropy(tenfit.evals)
    FA[np.isnan(FA)] = 0
      
    np.save(os.getcwd()+'\zhibiao'+f_name+'_FA.npy',FA)
    fa_img = nib.Nifti1Image(FA.astype(np.float32), affine)
    nib.save(fa_img,os.getcwd()+'\zhibiao'+f_name+'_FA.nii.gz')
    print('Saving "DTI_tensor_fa.nii.gz" sucessful.')
    evecs_img = nib.Nifti1Image(tenfit.evecs.astype(np.float32), affine)
    nib.save(evecs_img, os.getcwd()+'\zhibiao'+f_name+'_DTI_tensor_evecs.nii.gz')
    print('Saving "DTI_tensor_evecs.nii.gz" sucessful.')
    MD1 = mean_diffusivity(tenfit.evals)
    nib.save(nib.Nifti1Image(MD1.astype(np.float32), img.get_affine()), os.getcwd()+'\zhibiao'+f_name+'_MD.nii.gz')
    
    
    #tensor_odfs = tenmodel.fit(data[20:50, 55:85, 38:39]).odf(sphere)
    #from dipy.reconst.odf import gfa
    #dti_gfa=gfa(tensor_odfs)
    
    wm_mask = (np.logical_or(FA >= 0.4, (np.logical_and(FA >= 0.15, MD >= 0.0011))))

    response = recursive_response(gtab, data, mask=wm_mask, sh_order=8,
                                  peak_thr=0.01, init_fa=0.08,
                                  init_trace=0.0021, iter=8, convergence=0.001,
                                  parallel=False)
    from dipy.reconst.csdeconv import ConstrainedSphericalDeconvModel
    csd_model = ConstrainedSphericalDeconvModel(gtab, response)
    
    #csd_fit = csd_model.fit(data)

    from dipy.direction import peaks_from_model

    csd_peaks = peaks_from_model(model=csd_model,
                                 data=data,
                                 sphere=sphere,
                                 relative_peak_threshold=.5,
                                 min_separation_angle=25,
                                 parallel=False)
    
    GFA = csd_peaks.gfa
    
    nib.save(GFA, os.getcwd()+'\zhibiao'+f_name+'_MSD.nii.gz')
    print('Saving "GFA.nii.gz" sucessful.')
    
    from dipy.reconst.shore import ShoreModel
    asm = ShoreModel(gtab)
    print('Calculating...SHORE msd')
    asmfit = asm.fit(data,mask)
    msd = asmfit.msd()
    msd[np.isnan(msd)] = 0
    
    #print GFA[:,:,slice].T
    print('Saving msd_img.png')
    nib.save(msd, os.getcwd()+'\zhibiao'+f_name+'_GFA.nii.gz')
Esempio n. 40
0
nifti_path_5shell = r'D:\MASI LAB WORK\Solid_Harmonics\vishabyte_concat.nii.gz'
bvec_path_5shell = os.path.normpath(bvec_path_5shell)
bval_path_5shell = os.path.normpath(bval_path_5shell)
nifti_path_5shell = os.path.normpath(nifti_path_5shell)

nifti_5 = nib.load(nifti_path_5shell)
nifti_img_5shell = nifti_5.get_data()

bvals_5shell,bvecs_5shell = read_bvals_bvecs(bval_path_5shell, bvec_path_5shell)
gtab_5shell = gradient_table(bvals_5shell, bvecs_5shell)

asm5shell = ShoreModel(gtab_5shell, radial_order=radial_order,
                 zeta=zeta, lambdaN=lambdaN, lambdaL=lambdaL)


asmfit = asm.fit(nifti_img)

asm5shell_fit = asm5shell.fit(nifti_img_5shell)

asm5shell_fit.fit_array = asmfit.fit_array

print('Shore Model Coeffs Generated ... \n')

print('Reconstructing Signal with new Shore\n')

signal_recon = asm5shell_fit.fitted_signal()
#signal_recon = asmfit.fitted_signal()

print('Signal Reconstructed \n')

#print('Calculating MSE per b-value')