Esempio n. 1
0
File: cv.py Progetto: tgzihg/pyCV
def cv_collect(rootdir):
    cv_list = []
    for filename, subdir in walker(rootdir, re.compile('cv(.*?)txt')):
        cv_list.append(
            txt_to_CV(
                Path(subdir).joinpath(filename), filename[:len(filename) - 4]))
    with open(rootdir.joinpath('list_cv.txt'), 'w') as f:
        f.truncate()
        for i, cv in enumerate(cv_list):
            f.write(str(i) + ' ' + cv.info)
            f.write('\n')
    print()
    print('List of CV has been saved to ' + str(rootdir) + 'cv_list.txt')
    with open(rootdir.joinpath('data_cv.pickle'), 'wb') as f:
        pickle.dump(cv_list, f, pickle.HIGHEST_PROTOCOL)
    print()
    print("CV information has been dumped to " + str(rootdir) +
          'cv_data.pickle')
    return cv_list
Esempio n. 2
0
def get_dataset(files_dir, x_range, num_classes, y_starts_from):
    """
    Get data from csv file, do the augmentation, then save to npy file for further uses.
    y here only stands for class, so there must be consequenced class in filename.
    """
    Y = []
    X = []
    coordinates = []
    # import csv data
    for filename, subdir in walker(files_dir,
                                   re.compile('training(.*?)_\d+.csv')):
        # print(subdir+'/'+filename)
        with open(subdir + '/' + filename, 'r') as f:
            reader = csv.reader(f)
            data_list = list(reader)[1:]  # Skip the first line
        try:
            x = [float(data_list[i][1])
                 for i in x_range]  # len(x_range)*1 list here
            coordinate = [float(data_list[i][0]) for i in x_range]
        except IndexError:
            print("IndexError, please check " + subdir + '/' + filename)
            continue
        X.append(x)  # m*n list
        coordinates.append(coordinate)
        y = re.findall('training(\d+)_.*?.csv',
                       filename)[-1]  # starts from 0 maybe
        # y_one_hot = np.eye(9, dtype=int)[int(y) - 1]
        if y_starts_from == 0:
            Y.append(int(y))  # where y is 0~(num_classes-1)
        else:
            Y.append(int(y) - 1)  #where y is 1~num_classes
    Y_one_hot = to_categorical(Y, num_classes=num_classes)
    X_np = np.array(X)  # m*n numpy array
    Y_np = np.array(Y_one_hot)  # m*c numpy array
    coordinates_np = np.array(coordinates)
    return X_np, Y_np, coordinates_np
Esempio n. 3
0
# import datetime
import os
import re
from pathlib import Path

import pandas as pd

from dir_walker import walker

aimed_path - ""
saved_filename = "" # save to excel by default

working_path = Path(aimed_path)

for i, (filename, subdir) in enumerate(walker(working_path, pattern=re.compile('.*?.txt'))):
    print("reading "+filename)
    with open(Path(subdir).joinpath(Path(filename)), 'r') as fp:
    head = fp.readline()
    stock_name = head[7:11]
    print(stock_name)
    # Skip first two lines and the last line
    data_csv = pd.read_csv(Path(subdir).joinpath(Path(filename)), skiprows=2, header=None, encoding='gbk')[:-1]
    # extract the first and the 5th column
    data_csv = data_csv.loc[:, [0, 4]]
    # data_csv.columns = ['date', filename[:-4]]
    data_csv_t = data_csv.transpose()
    header_date = data_csv_t.iloc[0]
    data_csv_t = data_csv_t[1:]
    data_csv_t.columns = header_date
    data_csv_t['stock'] = filename[:-4]
    data_csv_t['name'] = stock_name
Esempio n. 4
0
        for line in f:
            time.append(float(line.split()[0]))
            potential.append(float(line.split()[1]))
    start_record = 0
    for i, p in enumerate(potential):
        if start_record and (sum(potential[i:i + 50]) / 50 > 3e-3):
            time_last = time[i] - time[start_record]
        elif (sum(potential[i:i + 50]) / 50 > 3e-3):
            start_record = i
        elif start_record:
            break
    print('time: ' + str(time_last))
    print('std: ' + str(np.std(potential[start_record + 50:i])))
    return time[start_record + 50:i], potential[start_record + 50:i]


def write_p(file, time, potential):
    with open(file, 'w') as f:
        # f.write('time/ms,voltage/V')
        # f.write('\n')
        for i, p in enumerate(potential):
            f.write(str(time[i]))
            f.write(',')
            f.write(str(p))
            f.write('\n')


for filename, subdir in walker(rootdir, re.compile('(.*?).txt')):
    print(filename)
    time, potential = read_p(subdir + '/' + filename)
    write_p(subdir + '/' + filename[:-4] + '.csv', time, potential)
Esempio n. 5
0
# Extract required lines from given ascii files
# and reclassify them by potential

import os
from dir_walker import walker

# rootdir = 'G:/finaldesign/ENML/data/20180509'
rootdir = "C:/code/ENML/data/20180523"
save_dir = 'C:/code/ENML/data/20180523_extracted'
if not os.path.exists(save_dir):
    os.makedirs(save_dir)

# extract
for filename, subdir in walker(rootdir):
    print("Opening " + filename)
    a = []
    with open(subdir + '/' + filename, 'rb') as f:
        for line in f:
            try:
                a.append(line.decode())
            except UnicodeDecodeError:
                a.append('\r\n')
                pass
        # if not a[75].split()[0] == '8000':
        #     # judge whether the file is correct
        #     print("File "+filename+' is not correct')
        #     continue
        extracted_lines = a[76:-2]

    # save
    with open(save_dir + '/' + filename, 'w', newline='\n') as f:
Esempio n. 6
0
# Used to compare data collected from 2 different stations.

from dir_walker import walker
import re
import csv
import matplotlib.pyplot as plt
import random

plt.style.use('ggplot')

rootdir = 'C:/code/ENML/test/i_v'

subdir1 = list(walker(rootdir, re.compile('(.*?).csv')))[0][1]
label1 = subdir1[(len(rootdir) - len(subdir1)):]
subdir2 = list(walker(rootdir, re.compile('(.*?).csv')))[-1][1]
label2 = subdir2[(len(rootdir) - len(subdir2)):]

x_range = range(7000, 7101)
fig = plt.figure()
i, j = (1, 1)
num_file = 0

for filename, subdir in walker(subdir1, re.compile('(.*?).csv')):
    # if random.random() < 0.8:
    #     continue
    print(subdir + '/' + filename)
    num_file = num_file + 1
    print('#file: %d' % num_file)
    with open(subdir + '/' + filename, 'r') as f:
        reader = csv.reader(f)
        data_list = list(reader)[1:]