def main(): print("load initial model ...") param_nn = cPickle.load(open(DIS_MODEL_FILE_NN)) assert param_nn is not None discriminator = DIS(FEATURE_SIZE, HIDDEN_SIZE, D_WEIGHT_DECAY, D_LEARNING_RATE, loss='log', param=param_nn) generator = GEN(FEATURE_SIZE, HIDDEN_SIZE, G_WEIGHT_DECAY, G_LEARNING_RATE, param=param_nn) config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) sess.run(tf.initialize_all_variables()) print('start adversarial training') p_best_val = 0.0 ndcg_best_val = 0.0 for epoch in range(30): if epoch > 0: # G generate negative for D, then train D print('Training D ...') generate_for_d(sess, generator, DIS_TRAIN_FILE) train_size = ut.file_len(DIS_TRAIN_FILE) for d_epoch in range(30): index = 1 while True: if index > train_size: break if index + BATCH_SIZE <= train_size + 1: input_pos, input_neg = ut.get_batch_data( DIS_TRAIN_FILE, index, BATCH_SIZE) else: input_pos, input_neg = ut.get_batch_data( DIS_TRAIN_FILE, index, train_size - index + 1) index += BATCH_SIZE _ = sess.run(discriminator.d_updates, feed_dict={ discriminator.pos_data: input_pos, discriminator.neg_data: input_neg }) p_5 = precision_at_k(sess, discriminator, query_pos_test, query_pos_train, query_url_feature, k=5) ndcg_5 = ndcg_at_k(sess, discriminator, query_pos_test, query_pos_train, query_url_feature, k=5) if p_5 > p_best_val: p_best_val = p_5 ndcg_best_val = ndcg_5 discriminator.save_model(sess, GAN_MODEL_BEST_FILE) print("Best: ", "dis p@5 ", p_5, "dis ndcg@5 ", ndcg_5) elif p_5 == p_best_val: if ndcg_5 > ndcg_best_val: ndcg_best_val = ndcg_5 discriminator.save_model(sess, GAN_MODEL_BEST_FILE) print("Best: ", "dis p@5 ", p_5, "dis ndcg@5 ", ndcg_5) # Train G print('Training G ...') for g_epoch in range(50): # 50 for query in query_pos_train.keys(): pos_list = query_pos_train[query] # candidate_list = list(set(query_url_feature[query].keys()) - set(pos_list)) candidate_list = list(query_url_feature[query].keys()) if len(candidate_list) <= 0: continue candidate_list_feature = [ query_url_feature[query][url] for url in candidate_list ] candidate_list_feature = np.asarray(candidate_list_feature) candidate_list_score = sess.run( generator.pred_score, {generator.pred_data: candidate_list_feature}) # softmax for all exp_rating = np.exp(candidate_list_score) prob = exp_rating / np.sum(exp_rating) neg_index = np.random.choice(np.arange(len(candidate_list)), size=[len(pos_list)], p=prob) neg_list = np.array(candidate_list)[neg_index] pos_list_feature = [ query_url_feature[query][url] for url in pos_list ] neg_list_feature = [ query_url_feature[query][url] for url in neg_list ] neg_index = np.asarray(neg_index) # every negative samples have a reward neg_reward = sess.run(discriminator.reward, feed_dict={ discriminator.pos_data: pos_list_feature, discriminator.neg_data: neg_list_feature }) # Method 1: softmax before gather _ = sess.run(generator.gan_updates, feed_dict={ generator.pred_data: candidate_list_feature, generator.sample_index: neg_index, generator.reward: neg_reward }) print('Best p@5: ', p_best_val, 'Best ndcg@5: ', ndcg_best_val)
def main(): discriminator = DIS(FEATURE_SIZE, HIDDEN_SIZE, WEIGHT_DECAY, D_LEARNING_RATE, loss='log', param=None) config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) sess.run(tf.initialize_all_variables()) print('start dynamic negative sampling with log ranking discriminator') p_best_val = 0.0 ndcg_best_val = 0.0 for epoch in range(200): generate_dns(sess, discriminator, DIS_TRAIN_FILE) train_size = ut.file_len(DIS_TRAIN_FILE) index = 1 while True: if index > train_size: break if index + BATCH_SIZE <= train_size + 1: input_pos, input_neg = ut.get_batch_data( DIS_TRAIN_FILE, index, BATCH_SIZE) else: input_pos, input_neg = ut.get_batch_data( DIS_TRAIN_FILE, index, train_size - index + 1) index += BATCH_SIZE input_pos = np.asarray(input_pos) input_neg = np.asarray(input_neg) _ = sess.run(discriminator.d_updates, feed_dict={ discriminator.pos_data: input_pos, discriminator.neg_data: input_neg }) p_5 = precision_at_k(sess, discriminator, query_pos_test, query_pos_train, query_url_feature, k=5) ndcg_5 = ndcg_at_k(sess, discriminator, query_pos_test, query_pos_train, query_url_feature, k=5) if p_5 > p_best_val: p_best_val = p_5 discriminator.save_model(sess, DNS_MODEL_BEST_FILE) print("Best: ", " p@5 ", p_5, "ndcg@5 ", ndcg_5) elif p_5 == p_best_val: if ndcg_5 > ndcg_best_val: ndcg_best_val = ndcg_5 discriminator.save_model(sess, DNS_MODEL_BEST_FILE) print("Best: ", " p@5 ", p_5, "ndcg@5 ", ndcg_5) sess.close() param_best = cPickle.load(open(DNS_MODEL_BEST_FILE)) assert param_best is not None discriminator_best = DIS(FEATURE_SIZE, HIDDEN_SIZE, WEIGHT_DECAY, D_LEARNING_RATE, loss='log', param=param_best) sess = tf.Session(config=config) sess.run(tf.initialize_all_variables()) p_1_best = precision_at_k(sess, discriminator_best, query_pos_test, query_pos_train, query_url_feature, k=1) p_3_best = precision_at_k(sess, discriminator_best, query_pos_test, query_pos_train, query_url_feature, k=3) p_5_best = precision_at_k(sess, discriminator_best, query_pos_test, query_pos_train, query_url_feature, k=5) p_10_best = precision_at_k(sess, discriminator_best, query_pos_test, query_pos_train, query_url_feature, k=10) ndcg_1_best = ndcg_at_k(sess, discriminator_best, query_pos_test, query_pos_train, query_url_feature, k=1) ndcg_3_best = ndcg_at_k(sess, discriminator_best, query_pos_test, query_pos_train, query_url_feature, k=3) ndcg_5_best = ndcg_at_k(sess, discriminator_best, query_pos_test, query_pos_train, query_url_feature, k=5) ndcg_10_best = ndcg_at_k(sess, discriminator_best, query_pos_test, query_pos_train, query_url_feature, k=10) map_best = MAP(sess, discriminator_best, query_pos_test, query_pos_train, query_url_feature) mrr_best = MRR(sess, discriminator_best, query_pos_test, query_pos_train, query_url_feature) print("Best ", "p@1 ", p_1_best, "p@3 ", p_3_best, "p@5 ", p_5_best, "p@10 ", p_10_best) print("Best ", "ndcg@1 ", ndcg_1_best, "ndcg@3 ", ndcg_3_best, "ndcg@5 ", ndcg_5_best, "p@10 ", ndcg_10_best) print("Best MAP ", map_best) print("Best MRR ", mrr_best)
D_WEIGHT_DECAY = 0.001 D_LEARNING_RATE = 0.0001 workdir = 'MQ2008-semi' GAN_PAIRWISE_MODEL_BEST_FILE = workdir + '/gan/gan_best_nn.model' query_url_feature =\ ut.load_all_query_url_feature(workdir + '/Large_norm.txt', FEATURE_SIZE) query_pos_train = ut.get_query_pos(workdir + '/train.txt') query_pos_test = ut.get_query_pos(workdir + '/test.txt') param_best = cPickle.load(open(GAN_PAIRWISE_MODEL_BEST_FILE)) assert param_best is not None discriminator_best = DIS(FEATURE_SIZE, HIDDEN_SIZE, D_WEIGHT_DECAY, D_LEARNING_RATE, loss='log', param=param_best) config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) sess.run(tf.initialize_all_variables()) p_1_best = precision_at_k(sess, discriminator_best, query_pos_test, query_pos_train, query_url_feature, k=1) p_3_best = precision_at_k(sess,