def _init_model(self, x): n_features = x.shape[1] self.converged_ = False self.n_iter_ = 0 self._z = np.zeros(n_features) # u has one row per each row-block in x self._u = ds.zeros((x._n_blocks[0], n_features), (1, x._reg_shape[1]))
def test_full(self): """ Tests full functions """ x = ds.zeros((10, 10), (3, 7), dtype=int) x_np = np.zeros((10, 10), dtype=int) self.assertTrue(_validate_array(x)) self.assertTrue(_equal_arrays(x.collect(), x_np)) x = ds.full((11, 11), (3, 5), 15, dtype=float) x_np = np.full((11, 11), 15, dtype=float) self.assertTrue(_validate_array(x)) self.assertTrue(_equal_arrays(x.collect(), x_np))
def empty_state(self): bs = self._hilbert_size // max_par self._state = ds.zeros(shape=(1, self._hilbert_size), block_size=(1, bs), dtype=np.complex64) return