Esempio n. 1
0
 def __init__(self, get_filenames, n_merge_bins=None, plot_bins_step=4,
              spread_data=False, neg_shift=True):
     Struct.__init__(self, get_filenames=get_filenames,
                     n_merge_bins=n_merge_bins,
                     plot_bins_step=plot_bins_step,
                     spread_data=spread_data, neg_shift=neg_shift)
     self.current = Struct(filenames=None, dir_base=None, base_names=None)
     self.source_data = Struct(data=None, fdata=None, bins=None)
Esempio n. 2
0
 def __init__(self, model_class, n_components, parameters, constraints,
              solver_conf, output_dir):
     Struct.__init__(self,
                     model_class=model_class,
                     n_components=n_components,
                     parameters=parameters,
                     constraints=constraints,
                     solver_conf=solver_conf,
                     output_dir=output_dir)
Esempio n. 3
0
 def __init__(self, model_class, n_components, parameters, constraints, solver_conf, output_dir):
     Struct.__init__(
         self,
         model_class=model_class,
         n_components=n_components,
         parameters=parameters,
         constraints=constraints,
         solver_conf=solver_conf,
         output_dir=output_dir,
     )
Esempio n. 4
0
 def __init__(self,
              get_filenames,
              n_merge_bins=None,
              plot_bins_step=4,
              spread_data=False,
              neg_shift=True):
     Struct.__init__(self,
                     get_filenames=get_filenames,
                     n_merge_bins=n_merge_bins,
                     plot_bins_step=plot_bins_step,
                     spread_data=spread_data,
                     neg_shift=neg_shift)
     self.current = Struct(filenames=None, dir_base=None, base_names=None)
     self.source_data = Struct(data=None, fdata=None, bins=None)
Esempio n. 5
0
    def __call__(self):
        for filenames in self.get_filenames:
            dir_base, base_names = io.split_dir_base(filenames)
            print '======================================================'
            print 'directory base:', dir_base

            data = io.load_data(filenames)
            if self.n_merge_bins is not None:
                data = tr.merge_bins(data, self.n_merge_bins)
            print 'angles range:', data[:, 0].min(), data[:, 0].max()

            data = tr.fix_increasing(tr.fix_range(tr.transform_2pi(data)))

            print 'transformed angles range:', data[0, 0], data[-1, 0]
            print 'data range:', data[:, 1].min(), data[:, 1].max()

            # Simulate the "random process" the histogram was done from.
            counts = tr.get_counts_from_lengths(data[:, 1])
            fdata = tr.spread_by_counts(data[:, 0],
                                        counts,
                                        trivial=self.spread_data == False)

            print 'simulated counts range:', counts.min(), counts.max()

            ddata = np.sort(
                tr.transform_pi_deg(data[:, 0], neg_shift=self.neg_shift))
            dd = ddata[1] - ddata[0]
            all_bins = np.r_[ddata - 1e-8, ddata[-1] + dd]
            bins = all_bins[::self.plot_bins_step]

            self.current = Struct(filenames=filenames,
                                  dir_base=dir_base,
                                  base_names=base_names)
            self.source_data = Struct(counts=counts,
                                      data=data,
                                      fdata=fdata,
                                      bins=bins)

            yield self.source_data
Esempio n. 6
0
    def parse_row(self, row):
        """
        Parse single hitogram row.
        """
        n_components = int(row[12])
        off = 13 + 3 * n_components
        params = np.array(map(float, row[13:off])).reshape((n_components, 3))
        item = Struct(
            dir_base=row[0],
            converged=int(row[1]),
            fit_criteria=map(float, row[2:5]),
            chisquare=map(float, row[5:12]),
            n_components=n_components,
            params=params,
            base_names=[ii.strip() for ii in row[off + 1].split(',')])
        assert (len(item.base_names) == int(row[off]))

        return item
Esempio n. 7
0
    def write_row(self, dir_base, base_names, chisquare, params, converged,
                  fit_criteria):
        n_components = params.shape[0]
        item = Struct(dir_base=dir_base,
                      base_names=base_names,
                      chisquare=chisquare,
                      params=params,
                      converged=converged,
                      n_components=n_components,
                      fit_criteria=fit_criteria)
        self.items.append(item)

        fd = open(self.log_name, 'a')

        writer = csv.writer(fd)
        writer.writerow([dir_base, int(converged)] + fit_criteria + chisquare +
                        [n_components] + params.ravel().tolist() +
                        [len(base_names), ', '.join(base_names)])
        fd.close()
Esempio n. 8
0
    def write_row(self, dir_base, base_names, area_angles):
        x0, xm, x1, area1, area2 = area_angles
        item = Struct(dir_base=dir_base,
                      base_names=base_names,
                      x0=x0,
                      xm=xm,
                      x1=x1,
                      area1=area1,
                      area2=area2)
        self.items.append(item)

        fd = open(self.log_name, 'a')

        writer = csv.writer(fd)
        writer.writerow(
            [dir_base] +
            [x0, 0.5 * (x0 + xm), xm, 0.5 * (xm + x1), x1, area1, area2] +
            [len(base_names), ', '.join(base_names)])
        fd.close()
Esempio n. 9
0
def make_summary(logs):
    """
    Make a summary table of all results.

    The best parameter set according to each criterion is selected.

    Parameters
    ----------
    logs : list of CSVLog
        A log with fitting results for each parameter set.

    Returns
    -------
    summary : dict
        The summary dictionary with data directory base names as keys.
    """
    dir_bases = [item.dir_base for item in logs[0].items]
    summary = {}
    for ii, dir_base in enumerate(dir_bases):
        # Results for dir_base for all parameter sets.
        items = [log.items[ii] for log in logs]

        criteria = [item.fit_criteria for item in items]
        pset_ids = np.array(criteria).argsort(axis=0)

        converged = np.take([item.converged for item in items], pset_ids)
        probs = np.take([item.params[:, 2] for item in items],
                        pset_ids,
                        axis=0)

        summary[dir_base] = Struct(
            sorted=zip(pset_ids, converged, probs),
            criteria=criteria,
            pset_ids=pset_ids,
            chisquare=[item.chisquare for item in items])
    return summary
Esempio n. 10
0
 def __init__(self, psets):
     Struct.__init__(self, psets=psets)
Esempio n. 11
0
 def __init__(self, psets):
     Struct.__init__(self, psets=psets)