def test_coincidence_when_not_zero(): for i in range(10): u = np.random.random(3) v = np.zeros(3) assert euclidean_dist(u, v) != 0 # def test_symmetry(): # for i in range(10): # u = np.random.random(3) # v = np.random.random(3) # assert euclidean_dist(u, v) == euclidean_dist(v, u) # def test_triangle(): # u = np.random.random(3) # v = np.random.random(3) # w = np.random.random(3) # assert euclidean_dist(u, w) <= euclidean_dist(u, v) + euclidean_dist(v, w) # def test_known1(): # u = np.array([0]) # v = np.array([3]) # assert_almost_equal(euclidean_dist(u, v), 3) # def test_known2(): # u = np.array([0,0]) # v = np.array([3, 4]) # assert_almost_equal(euclidean_dist(u, v), 5) # def test_known3(): # u = np.array([0,0]) # v = np.array([-3, -4]) # assert_almost_equal(euclidean_dist(u, v), 5)
def potential_at(self, coord): COULOMB = 8.99 * 10**9 # N m²/C² r = euclidean_dist(self._coord, coord) q = self._charge if r == 0: return float('inf') if q >= 0 else float('-inf') return (COULOMB * q) / r
def test_symmetry(): u = np.random.random(3) v = np.random.random(3) assert euclidean_dist(u, v) == euclidean_dist(v, u)
def test_coincidence_when_not_zero(): u = np.random.random(3) v = np.zeros(3) assert euclidean_dist(u, v) != 0
def test_coincidence_when_zero(): u = np.zeros(3) v = np.zeros(3) assert euclidean_dist(u, v) == 0
def __abs__(self): return euclidean_dist(self._coord)
def __abs__(self): return euclidean_dist(self._values, (0, 0, 0, 0))
def test_known3(): u = np.array([0, 0]) v = np.array([-3, -4]) assert_almost_equal(euclidean_dist(u, v), 5)
def test_known3(): u = np.array([0,0]) v = np.array([-3, -4]) assert_almost_equal(euclidean_dist(u, v), 5)
def test_known1(): u = np.array([0]) v = np.array([3]) assert_almost_equal(euclidean_dist(u, v), 3)
def test_triangle(): u = np.random.random(3) v = np.random.random(3) w = np.random.random(3) assert euclidean_dist(u, w) <= euclidean_dist(u, v) + euclidean_dist(v, w)
def test_symmetry(): for i in range(10): u = np.random.random(3) v = np.random.random(3) assert euclidean_dist(u, v) == euclidean_dist(v, u)
def test_coincidence_when_not_zero(): for i in range(10): u = np.random.random(3) v = np.zeros(3) assert euclidean_dist(u, v) != 0
def test_non_negativity(): for i in range(10): u = np.random.normal(3) v = np.random.normal(3) assert euclidean_dist(u, v) >= 0
def test_non_negativity(): u = np.random.normal(3) v = np.random.normal(3) assert euclidean_dist(u, v) >= 0
def distance_to(self, other): return euclidean_dist((self._x, self._y), (other._x, other._y))