def create_objectives_elbo(self, deterministic=False): """ELBO objective without the analytic expectation trick""" # load network input X = self.inputs[0] x = X.flatten(2) # load network output if self.model == 'bernoulli': q_mu, q_logsigma, p_mu, z \ = lasagne.layers.get_output(self.network[2:], deterministic=deterministic) elif self.model == 'gaussian': raise NotImplementedError() # entropy term log_qz_given_x = log_normal2(z, q_mu, q_logsigma).sum(axis=1) # expected p(x,z) term z_prior_sigma = T.cast(T.ones_like(q_logsigma), dtype=theano.config.floatX) z_prior_mu = T.cast(T.zeros_like(q_mu), dtype=theano.config.floatX) log_pz = log_normal(z, z_prior_mu, z_prior_sigma).sum(axis=1) log_px_given_z = log_bernoulli(x, p_mu).sum(axis=1) log_pxz = log_pz + log_px_given_z elbo = (log_pxz - log_qz_given_x).mean() # we don't use the spearate accuracy metric right now return -elbo, -log_qz_given_x.mean()
def create_objectives(self, deterministic=False): # load network input X = self.inputs[0] x = X.flatten(2) # duplicate entries to take into account multiple mc samples n_sam = self.n_sample n_out = x.shape[1] x = x.dimshuffle(0, 'x', 1).repeat(n_sam, axis=1).reshape((-1, n_out)) # load network l_px_mu, l_px_logsigma, l_pa_mu, l_pa_logsigma, \ l_qz_mu, l_qz_logsigma, l_qa_mu, l_qa_logsigma, \ l_qa, l_qz = self.network # load network output pa_mu, pa_logsigma, qz_mu, qz_logsigma, qa_mu, qa_logsigma, a, z \ = lasagne.layers.get_output( [ l_pa_mu, l_pa_logsigma, l_qz_mu, l_qz_logsigma, l_qa_mu, l_qa_logsigma, l_qa, l_qz ], deterministic=deterministic) if self.model == 'bernoulli': px_mu = lasagne.layers.get_output(l_px_mu, deterministic=deterministic) elif self.model == 'gaussian': px_mu, px_logsigma = lasagne.layers.get_output( [l_px_mu, l_px_logsigma], deterministic=deterministic) # entropy term log_qa_given_x = log_normal2(a, qa_mu, qa_logsigma).sum(axis=1) log_qz_given_ax = log_normal2(z, qz_mu, qz_logsigma).sum(axis=1) log_qza_given_x = log_qz_given_ax + log_qa_given_x # log-probability term z_prior_sigma = T.cast(T.ones_like(qz_logsigma), dtype=theano.config.floatX) z_prior_mu = T.cast(T.zeros_like(qz_mu), dtype=theano.config.floatX) log_pz = log_normal(z, z_prior_mu, z_prior_sigma).sum(axis=1) log_pa_given_z = log_normal2(a, pa_mu, pa_logsigma).sum(axis=1) if self.model == 'bernoulli': log_px_given_z = log_bernoulli(x, px_mu).sum(axis=1) elif self.model == 'gaussian': log_px_given_z = log_normal2(x, px_mu, px_logsigma).sum(axis=1) log_paxz = log_pa_given_z + log_px_given_z + log_pz # # experiment: uniform prior p(a) # a_prior_sigma = T.cast(T.ones_like(qa_logsigma), dtype=theano.config.floatX) # a_prior_mu = T.cast(T.zeros_like(qa_mu), dtype=theano.config.floatX) # log_pa = log_normal(a, a_prior_mu, a_prior_sigma).sum(axis=1) # log_paxz = log_pa + log_px_given_z + log_pz # compute the evidence lower bound elbo = T.mean(log_paxz - log_qza_given_x) # we don't use a spearate accuracy metric right now return -elbo, T.max(qz_logsigma)
def create_gradients(self, loss, deterministic=False): from theano.gradient import disconnected_grad as dg # load network input X = self.inputs[0] x = X.flatten(2) # load network output if self.model == 'bernoulli': q_mu, q_logsigma, p_mu, z \ = lasagne.layers.get_output(self.network[2:], deterministic=deterministic) elif self.model == 'gaussian': raise NotImplementedError() # load params p_params, q_params = self._get_net_params() # entropy term log_qz_given_x = log_normal2(z, q_mu, q_logsigma).sum(axis=1) # expected p(x,z) term z_prior_sigma = T.cast(T.ones_like(q_logsigma), dtype=theano.config.floatX) z_prior_mu = T.cast(T.zeros_like(q_mu), dtype=theano.config.floatX) log_pz = log_normal(z, z_prior_mu, z_prior_sigma).sum(axis=1) log_px_given_z = log_bernoulli(x, p_mu).sum(axis=1) log_pxz = log_pz + log_px_given_z # compute learning signals l = log_pxz - log_qz_given_x # l_avg, l_std = l.mean(), T.maximum(1, l.std()) # c_new = 0.8*c + 0.2*l_avg # v_new = 0.8*v + 0.2*l_std # l = (l - c_new) / v_new # compute grad wrt p p_grads = T.grad(-log_pxz.mean(), p_params) # compute grad wrt q # q_target = T.mean(dg(l) * log_qz_given_x) # q_grads = T.grad(-0.2*q_target, q_params) # 5x slower rate for q log_qz_given_x = log_normal2(dg(z), q_mu, q_logsigma).sum(axis=1) q_target = T.mean(dg(l) * log_qz_given_x) q_grads = T.grad(-0.2 * q_target, q_params) # 5x slower rate for q # q_grads = T.grad(-l.mean(), q_params) # 5x slower rate for q # # compute grad of cv net # cv_target = T.mean(l**2) # cv_grads = T.grad(cv_target, cv_params) # combine and clip gradients clip_grad = 1 max_norm = 5 grads = p_grads + q_grads mgrads = lasagne.updates.total_norm_constraint(grads, max_norm=max_norm) cgrads = [T.clip(g, -clip_grad, clip_grad) for g in mgrads] return cgrads
def _create_components(self, D): # collect samples (l_qx, l_qx_samp, l_pa_mu, l_pa_logsigma) = self.network a = self.A qx, x = lasagne.layers.get_output([l_qx, l_qx_samp], a) pa_mu, pa_logsigma = lasagne.layers.get_output( [l_pa_mu, l_pa_logsigma], x) # compute logQ logQa = T.sum(log_normal(a, 0., 1.), axis=1) logQx_given_a = T.sum(log_bernoulli(x, qx), axis=1) logQ = logQa + logQx_given_a # compute energies of the samples, dim=(1, n_tot_samples) logFx = self._free_energy(x.T, marginalize=self.marginalize) logpa = T.sum(log_normal2(a, pa_mu, pa_logsigma), axis=1) # logF = logFx + logpa # free energy of the data D = D.reshape((-1, self.n_visible)).T logF_D = self._free_energy(D) self._components = (logFx, logpa, logQ, logF_D)
def create_objectives(self, deterministic=False): # load network input X = self.inputs[0] Y = self.inputs[1] x = X.flatten(2) # duplicate entries to take into account multiple mc samples n_sam = self.n_sample n_out = x.shape[1] x = x.dimshuffle(0, 'x', 1).repeat(n_sam, axis=1).reshape((-1, n_out)) # load network l_px_mu, l_px_logsigma, l_pa_mu, l_pa_logsigma, \ l_qz_mu, l_qz_logsigma, l_qa_mu, l_qa_logsigma, \ l_qa, l_qz, l_d = self.network # load network output pa_mu, pa_logsigma, qz_mu, qz_logsigma, qa_mu, qa_logsigma, a, z \ = lasagne.layers.get_output( [ l_pa_mu, l_pa_logsigma, l_qz_mu, l_qz_logsigma, l_qa_mu, l_qa_logsigma, l_qa, l_qz ], deterministic=deterministic) if self.model == 'bernoulli': px_mu = lasagne.layers.get_output(l_px_mu, deterministic=deterministic) elif self.model == 'gaussian': px_mu, px_logsigma = lasagne.layers.get_output( [l_px_mu, l_px_logsigma], deterministic=deterministic) # entropy term log_qa_given_x = log_normal2(a, qa_mu, qa_logsigma).sum(axis=1) log_qz_given_ax = log_normal2(z, qz_mu, qz_logsigma).sum(axis=1) log_qza_given_x = log_qz_given_ax + log_qa_given_x # log-probability term z_prior_sigma = T.cast(T.ones_like(qz_logsigma), dtype=theano.config.floatX) z_prior_mu = T.cast(T.zeros_like(qz_mu), dtype=theano.config.floatX) log_pz = log_normal(z, z_prior_mu, z_prior_sigma).sum(axis=1) log_pa_given_z = log_normal2(a, pa_mu, pa_logsigma).sum(axis=1) if self.model == 'bernoulli': log_px_given_z = log_bernoulli(x, px_mu).sum(axis=1) elif self.model == 'gaussian': log_px_given_z = log_normal2(x, px_mu, px_logsigma).sum(axis=1) log_paxz = log_pa_given_z + log_px_given_z + log_pz # discriminative component P = lasagne.layers.get_output(l_d) P_test = lasagne.layers.get_output(l_d, deterministic=True) disc_loss = lasagne.objectives.categorical_crossentropy(P, Y) # measure accuracy top = theano.tensor.argmax(P, axis=-1) top_test = theano.tensor.argmax(P_test, axis=-1) acc = theano.tensor.eq(top, Y).mean() acc_test = theano.tensor.eq(top_test, Y).mean() # compute the evidence lower bound elbo = T.mean(-disc_loss + log_paxz - log_qza_given_x) # elbo = T.mean(-disc_loss) if deterministic: return -elbo, acc_test else: return -elbo, acc