def _observe(self, action):
     mean_old = self._state[action].mu
     sigma_old = self._state[action].sigma
     tau_old = 1 / (sigma_old**2)
     obs_dist = Normal(self.ground_truth[action], 1 / math.sqrt(self.tau))
     obs = obs_dist.sample()
     self.obs_list[action].append(obs)
     tau_new = tau_old + len(self.obs_list[action]) * self.tau
     mean_new = ((mean_old * tau_old) +
                 self.tau * sum(self.obs_list[action])) / tau_new
     sigma_new = 1 / math.sqrt(tau_new)
     s = list(self._state)
     s[action] = Normal(mean_new, sigma_new)
     return tuple(s)
Esempio n. 2
0
    def actor(self, states, name='actor', reuse=False, trainable=True):
        with tf.variable_scope(name, reuse=reuse):
            features = self.actor_net(states,
                                      self.drop_rate,
                                      trainable=trainable)

            if isinstance(self.act_space, gym.spaces.Discrete):
                logits = Dense(self.act_space.n,
                               None,
                               trainable=trainable,
                               name="layer_logits")(features)
                distribution = Categorical(logits)

            else:
                mean = Dense(self.act_space.shape[0],
                             None,
                             trainable=trainable,
                             name='mean')(features)
                logstd = tf.get_variable(
                    'logstd',
                    initializer=-0.5 *
                    np.ones(self.act_space.shape[0], dtype=np.float32))

                # logstd = Dense(self.act_space.shape[0], None, trainable=trainable, name='logstd')(features)
                distribution = Normal(mean=mean, logstd=logstd)

            return distribution
Esempio n. 3
0
def get_conjugate(likelihood, prior, parameter: str, observations: list):
    conjugate = CONJUGATE_TABLE[(likelihood.name, prior.name, parameter)]

    n = len(observations)

    if conjugate == "normal_normal_mean":
        new_mean = (1/(1/prior.sigma2 + n/likelihood.sigma2))*\
                    (prior.mu/prior.sigma2+sum(observations)/likelihood.sigma2)
        new_var = 1/(1/prior.sigma2+n/likelihood.sigma2)
        posterior = Normal(new_mean, new_var)

    elif conjugate == "normal_gamma_precision":
        new_alpha = prior.alpha + n/2
        new_beta = prior.beta + sum([(observations[i]-likelihood.mu)**2
                                for i in range(n)])/2
        posterior = Gamma(new_alpha, new_beta)

    elif conjugate == "normal_inv_gamma_variance":
        posterior = Inv_Gamma(prior.alpha + n/2, prior.beta +
                           sum([(observations[i]-likelihood.mu)**2
                                for i in range(n)])/2)

    elif conjugate == "exponential_gamma_rate":
        posterior = Gamma(prior.alpha+n, prior.beta+sum(observations))

    elif conjugate == "gamma_gamma_rate":
        posterior = Gamma(prior.alpha+n*likelihood.alpha, prior.beta+sum(observations))

    elif conjugate == "poisson_gamma_rate":
        posterior = Gamma(prior.alpha+sum(observations), prior.beta+n)

    return posterior
Esempio n. 4
0
    def sample(self, num_samples, t):
        scale_ind = 0
        z0_size = [num_samples] + self.z0_size
        dist = Normal(mu=torch.zeros(z0_size).cuda(), log_sigma=torch.zeros(z0_size).cuda(), temp=t)
        z, _ = dist.sample()

        idx_dec = 0
        s = self.prior_ftr0.unsqueeze(0)
        batch_size = z.size(0)
        s = s.expand(batch_size, -1, -1, -1)
        for cell in self.dec_tower:
            if cell.cell_type == 'combiner_dec':
                if idx_dec > 0:
                    # form prior
                    param = self.dec_sampler[idx_dec - 1](s)
                    mu, log_sigma = torch.chunk(param, 2, dim=1)
                    dist = Normal(mu, log_sigma, t)
                    z, _ = dist.sample()

                # 'combiner_dec'
                s = cell(s, z)
                idx_dec += 1
            else:
                s = cell(s)
                if cell.cell_type == 'up_dec':
                    scale_ind += 1

        if self.vanilla_vae:
            s = self.stem_decoder(z)

        for cell in self.post_process:
            s = cell(s)

        logits = self.image_conditional(s)
        return logits
 def reward(i):
     global node_types
     sigma_val = {
         'V1': 5,
         'V2': 10,
         'V3': 20,
         'V4': 40,
         'G1': 100,
         'G2': 120,
         'G3': 140,
         'G4': 160,
         'G5': 180
     }
     return Normal(mu=0, sigma=sigma_val[node_types[i]])
Esempio n. 6
0
    def forward(self, x):
        s = self.stem(2 * x - 1.0)

        # perform pre-processing
        for cell in self.pre_process:
            s = cell(s)

        # run the main encoder tower
        combiner_cells_enc = []
        combiner_cells_s = []
        for cell in self.enc_tower:
            if cell.cell_type == 'combiner_enc':
                combiner_cells_enc.append(cell)
                combiner_cells_s.append(s)
            else:
                s = cell(s)

        # reverse combiner cells and their input for decoder
        combiner_cells_enc.reverse()
        combiner_cells_s.reverse()

        idx_dec = 0
        ftr = self.enc0(s)  # this reduces the channel dimension
        param0 = self.enc_sampler[idx_dec](ftr)
        mu_q, log_sig_q = torch.chunk(param0, 2, dim=1)
        dist = Normal(mu_q, log_sig_q)  # for the first approx. posterior
        z, _ = dist.sample()
        log_q_conv = dist.log_p(z)

        # apply normalizing flows
        nf_offset = 0
        for n in range(self.num_flows):
            z, log_det = self.nf_cells[n](z, ftr)
            log_q_conv -= log_det
        nf_offset += self.num_flows
        all_q = [dist]
        all_log_q = [log_q_conv]

        # To make sure we do not pass any deterministic features from x to decoder.
        s = 0

        # prior for z0
        dist = Normal(mu=torch.zeros_like(z), log_sigma=torch.zeros_like(z))
        log_p_conv = dist.log_p(z)
        all_p = [dist]
        all_log_p = [log_p_conv]

        idx_dec = 0
        s = self.prior_ftr0.unsqueeze(0)
        batch_size = z.size(0)
        s = s.expand(batch_size, -1, -1, -1)
        for cell in self.dec_tower:
            if cell.cell_type == 'combiner_dec':
                if idx_dec > 0:
                    # form prior
                    param = self.dec_sampler[idx_dec - 1](s)
                    mu_p, log_sig_p = torch.chunk(param, 2, dim=1)

                    # form encoder
                    ftr = combiner_cells_enc[idx_dec - 1](
                        combiner_cells_s[idx_dec - 1], s)
                    param = self.enc_sampler[idx_dec](ftr)
                    mu_q, log_sig_q = torch.chunk(param, 2, dim=1)
                    dist = Normal(mu_p + mu_q, log_sig_p +
                                  log_sig_q) if self.res_dist else Normal(
                                      mu_q, log_sig_q)
                    z, _ = dist.sample()
                    log_q_conv = dist.log_p(z)
                    # apply NF
                    for n in range(self.num_flows):
                        z, log_det = self.nf_cells[nf_offset + n](z, ftr)
                        log_q_conv -= log_det
                    nf_offset += self.num_flows
                    all_log_q.append(log_q_conv)
                    all_q.append(dist)

                    # evaluate log_p(z)
                    dist = Normal(mu_p, log_sig_p)
                    log_p_conv = dist.log_p(z)
                    all_p.append(dist)
                    all_log_p.append(log_p_conv)

                # 'combiner_dec'
                s = cell(s, z)
                idx_dec += 1
            else:
                s = cell(s)

        if self.vanilla_vae:
            s = self.stem_decoder(z)

        for cell in self.post_process:
            s = cell(s)

        logits = self.image_conditional(s)

        # compute kl
        kl_all = []
        kl_diag = []
        log_p, log_q = 0., 0.
        for q, p, log_q_conv, log_p_conv in zip(all_q, all_p, all_log_q,
                                                all_log_p):
            if self.with_nf:
                kl_per_var = log_q_conv - log_p_conv
            else:
                kl_per_var = q.kl(p)

            kl_diag.append(torch.mean(torch.sum(kl_per_var, dim=[2, 3]),
                                      dim=0))
            kl_all.append(torch.sum(kl_per_var, dim=[1, 2, 3]))
            log_q += torch.sum(log_q_conv, dim=[1, 2, 3])
            log_p += torch.sum(log_p_conv, dim=[1, 2, 3])

        return logits, log_q, log_p, kl_all, kl_diag
Esempio n. 7
0
def make_env(cost=1.25, ground_truth=None):
    reward = Normal(0, 10).to_discrete(6)
    return MouselabEnv.new_symmetric([4, 1, 2],
                                     reward,
                                     cost=cost,
                                     ground_truth=None)
Esempio n. 8
0
from conjugates import get_conjugate, CONJUGATES_INV
from distributions import Normal, Gamma

# Our base model is a normal distribution, with the likelihood
likelihood = Normal(1,
                    [])  # with mean 1 and unknown precision tau = 1/variance
# We observe the values for X to be [1,2,1,0.5]
observations = [1, 2, 1, 0.5, 2, 4, -1, -5, 2, 4, 5]
# We want to find out what conjugate priors there are for a Normal distribution
# and its precision tau

print(CONJUGATES_INV[("Normal", "tau")])
# The answer is a Gamma distribution. Let's set the prior to Gamma:
prior = Gamma(3, 1)  # This is not an uninformative prior

# Combining these to the posterior:
posterior = get_conjugate(likelihood, prior, "precision", observations)
print(posterior.describe())
print(posterior.mean())
print(posterior.equitailed_cs(95))
posterior.plot_pdf(0, 2)
Esempio n. 9
0
def main():
    run_data = {}
    run_id = 0

    scale = 0.5
    emissions_normal = { 1: Normal(0, 2.0 * scale),
                         2: Normal(3.5, 3.0 * scale),
                         3: Normal(6.5, 1.0 * scale) }
    emissions_laplace = { 1: Laplace(0, 2.0 * scale),
                          2: Laplace(3.5, 3.0 * scale),
                          3: Laplace(6.5, 1.0 * scale) }
    emission_spec = emissions_normal
    dists = [Normal(max_sigma = 6.0) for n in range(3)]
    num_state_reps = 50
    num_emission_reps = 4
    num_gamma_init_reps = 4
    num_blocks = [1, 2, 5, 10, 20, 50]
    verbose = False
    graphics_on = False

    total_work = (num_state_reps * num_emission_reps *
                  2 * num_gamma_init_reps * len(num_blocks))

    work = 0
    for state_rep in range(num_state_reps):
        print 'State repetition %d' % state_rep

        # Generate HMM states
        while True:
            model = HMM([('Start', (1,),          (1.0,)),
                         (1,       (1,2,3),       (0.98, 0.02, 0.0)),
                         (2,       (1,2,3),       (0.02, 0.95,  0.03)),
                         (3,       (1,2,3,'End'), (0.03,  0.03,  0.93, 0.01))],
                    emission_spec)
            model.simulate()
            num_data = len(model.state_vec)
            if num_data < 5000 and num_data > 100: break

        counts = {}
        for state in model.state_vec:
            if not state in counts:
                counts[state] = 0
            counts[state] += 1
        if verbose: print 'Counts: %s' % str(counts)

        # Generate shuffled indices for repeatable shuffling
        shuffling = np.arange(num_data)
        np.random.shuffle(shuffling)
        
        for emission_rep in range(num_emission_reps):
            if verbose: print 'Emission repetition %d' % emission_rep
            model.emit()

            for shuffled in [False, True]:
                if verbose: print 'Shuffling HMM run: %s' % str(shuffled)
                states = np.array(model.state_vec)
                emissions = np.array(model.emission_vec)
                if shuffled:
                    states = states[shuffling]
                    emissions = emissions[shuffling]
                
                for num_block in num_blocks:
                    if verbose: print 'Blocks: %d' % num_block

                    blocks = np.array_split(np.arange(num_data), num_block)
                    
                    for gamma_rep in range(num_gamma_init_reps):
                        if verbose: print 'Initial gamma seed: %d' % gamma_rep

                        init_gamma = np.array(states) - 1

                        run_id += 1
                        this_run = {}

                        this_run['num data'] = num_data
                        this_run['state rep'] = state_rep
                        this_run['emission rep'] = emission_rep
                        this_run['shuffled'] = shuffled
                        this_run['blocks'] = num_block
                        this_run['gamma init rep'] = gamma_rep

                        start_time = time.clock()
                        results = em(emissions,
                                     dists,
                                     blocks = blocks,
                                     gamma_seed = gamma_rep,
                                     init_gamma = init_gamma,
                                     count_restart = 0.0)
                        pi = results['pi']
                        dists = results['dists']
                        reps = results['reps']
                        conv = results['converged']
                        run_time = time.clock() - start_time
                        this_run['run time'] = run_time
                        this_run['reps'] = reps

                        conv_status = conv and 'converged' or 'not converged'
                        this_run['convergence'] = conv_status

                        print 'Reps: %d (%s)' % (reps, conv_status)
                        print 'Time elapsed: %.2f' % run_time
                        if verbose: print_mixture(pi, dists)

                        if graphics_on:
                            display_densities(emissions, dists)
                            display_hist(emissions, dists)

                        act = emission_spec.values()
                        this_run['err mean max'] = max_error_mean(dists, act)
                        this_run['err mean mean'] = mean_error_mean(dists, act)

                        like = np.zeros(num_data)
                        pi_overall = np.mean(pi, 0)
                        for p, dist in zip(pi_overall, dists):
                            like += p * dist.density(states)
                        this_run['log likelihood'] = np.sum(np.log(like))

                        like = np.zeros(num_data)
                        for i, block in enumerate(blocks):
                            for p, dist in zip(pi[i], dists):
                                comp = p * dist.density(states[block])
                                like[block] += comp
                        this_run['log likelihood local'] = np.sum(np.log(like))

                        run_data[run_id] = this_run

                        work += 1
                        print 'Finished run %d/%d' % (work, total_work)

    # Output data to CSV
    cols = set()
    for id in run_data:
        for k in run_data[id]:
            cols.add(k)
    with open('outfile.csv', 'wb') as f:
        writer = csv.writer(f)
        writer.writerow(list(cols))
        writer.writerows([[run_data[id][c] for c in cols] for id in run_data])
Esempio n. 10
0
from numpy import mod, exp
import matplotlib.pyplot as plt
import random

from em import kmeans, em
from distributions import Normal
from visualization import display_densities, display_hist

# Parameters
reps = 100
mus = np.linspace(0.0, 5.0, 40)
dim = 50
theta = [0.0, 1.0]
temp = 2.269  # T_c = 2.269?
gibbs_sweeps = 30
model = [Normal() for n in range(2)]
pi_max = True
count_restart = 0.0
init = 'kmeans'  # Choices: random, kmeans, true
block_strategies = [
    'none', 'mean_4n', 'all_4n', 'mean_8n', 'all_8n', 'perfect'
]
graphics = False
show_each = False

# Set random seeds for reproducible runs
random.seed(163)
np.random.seed(137)

# Precalculate neighbors
neighbors_4 = {}
Esempio n. 11
0
    def forward(self, x, global_step, args):

        if args.fp16:
            x = x.half()

        metrics = {}

        alpha_i = utils.kl_balancer_coeff(
            num_scales=self.num_latent_scales,
            groups_per_scale=self.groups_per_scale,
            fun='square')

        x_in = self.preprocess(x)
        if args.fp16:
            x_in = x_in.half()
        s = self.stem(x_in)

        # perform pre-processing
        for cell in self.pre_process:
            s = cell(s)

        # run the main encoder tower
        combiner_cells_enc = []
        combiner_cells_s = []
        for cell in self.enc_tower:
            if cell.cell_type == 'combiner_enc':
                combiner_cells_enc.append(cell)
                combiner_cells_s.append(s)
            else:
                s = cell(s)

        # reverse combiner cells and their input for decoder
        combiner_cells_enc.reverse()
        combiner_cells_s.reverse()

        idx_dec = 0
        ftr = self.enc0(s)  # this reduces the channel dimension
        param0 = self.enc_sampler[idx_dec](ftr)
        mu_q, log_sig_q = torch.chunk(param0, 2, dim=1)
        dist = Normal(mu_q, log_sig_q)  # for the first approx. posterior
        z, _ = dist.sample()
        log_q_conv = dist.log_p(z)

        # apply normalizing flows
        nf_offset = 0
        for n in range(self.num_flows):
            z, log_det = self.nf_cells[n](z, ftr)
            log_q_conv -= log_det
        nf_offset += self.num_flows
        all_q = [dist]
        all_log_q = [log_q_conv]

        # To make sure we do not pass any deterministic features from x to decoder.
        s = 0

        # prior for z0
        dist = Normal(mu=torch.zeros_like(z), log_sigma=torch.zeros_like(z))
        log_p_conv = dist.log_p(z)
        all_p = [dist]
        all_log_p = [log_p_conv]

        idx_dec = 0
        s = self.prior_ftr0.unsqueeze(0)
        batch_size = z.size(0)
        s = s.expand(batch_size, -1, -1)
        for cell in self.dec_tower:
            if cell.cell_type == 'combiner_dec':
                if idx_dec > 0:
                    # form prior
                    param = self.dec_sampler[idx_dec - 1](s)
                    mu_p, log_sig_p = torch.chunk(param, 2, dim=1)

                    # form encoder
                    ftr = combiner_cells_enc[idx_dec - 1](
                        combiner_cells_s[idx_dec - 1], s)
                    param = self.enc_sampler[idx_dec](ftr)
                    mu_q, log_sig_q = torch.chunk(param, 2, dim=1)
                    dist = Normal(mu_p + mu_q, log_sig_p +
                                  log_sig_q) if self.res_dist else Normal(
                                      mu_q, log_sig_q)
                    z, _ = dist.sample()
                    log_q_conv = dist.log_p(z)
                    # apply NF
                    for n in range(self.num_flows):
                        z, log_det = self.nf_cells[nf_offset + n](z, ftr)
                        log_q_conv -= log_det
                    nf_offset += self.num_flows
                    all_log_q.append(log_q_conv)
                    all_q.append(dist)

                    # evaluate log_p(z)
                    dist = Normal(mu_p, log_sig_p)
                    log_p_conv = dist.log_p(z)
                    all_p.append(dist)
                    all_log_p.append(log_p_conv)

                # 'combiner_dec'
                s = cell(s, z)
                idx_dec += 1
            else:
                s = cell(s)

        if self.vanilla_vae:
            s = self.stem_decoder(z)

        for cell in self.post_process:
            s = cell(s)

        logits = self.image_conditional(s)

        # compute kl
        kl_all = []
        kl_diag = []
        log_p, log_q = 0., 0.
        for q, p, log_q_conv, log_p_conv in zip(all_q, all_p, all_log_q,
                                                all_log_p):
            if self.with_nf:
                kl_per_var = log_q_conv - log_p_conv
            else:
                kl_per_var = q.kl(p)

            kl_diag.append(torch.mean(torch.sum(kl_per_var, dim=2), dim=0))
            kl_all.append(torch.sum(kl_per_var, dim=[1, 2]))
            log_q += torch.sum(log_q_conv, dim=[1, 2])
            log_p += torch.sum(log_p_conv, dim=[1, 2])

        output = self.decoder_output(logits)
        """
        def _spectral_loss(x_target, x_out, args):
            if hps.use_nonrelative_specloss:
                sl = spectral_loss(x_target, x_out, args) / args.bandwidth['spec']
            else:
                sl = spectral_convergence(x_target, x_out, args)
            sl = t.mean(sl)
            return sl

        def _multispectral_loss(x_target, x_out, args):
            sl = multispectral_loss(x_target, x_out, args) / args.bandwidth['spec']
            sl = t.mean(sl)
            return sl
        """

        kl_coeff = utils.kl_coeff(global_step,
                                  args.kl_anneal_portion * args.num_total_iter,
                                  args.kl_const_portion * args.num_total_iter,
                                  args.kl_const_coeff)
        recon_loss = utils.reconstruction_loss(output,
                                               x,
                                               crop=self.crop_output)
        balanced_kl, kl_coeffs, kl_vals = utils.kl_balancer(kl_all,
                                                            kl_coeff,
                                                            kl_balance=True,
                                                            alpha_i=alpha_i)

        nelbo_batch = recon_loss + balanced_kl
        loss = torch.mean(nelbo_batch)

        bn_loss = self.batchnorm_loss()
        norm_loss = self.spectral_norm_parallel()

        #x_target = audio_postprocess(x.float(), args)
        #x_out = audio_postprocess(output.sample(), args)

        #spec_loss = _spectral_loss(x_target, x_out, args)
        #multispec_loss = _multispectral_loss(x_target, x_out, args)

        if args.weight_decay_norm_anneal:
            assert args.weight_decay_norm_init > 0 and args.weight_decay_norm > 0, 'init and final wdn should be positive.'
            wdn_coeff = (1. - kl_coeff) * np.log(
                args.weight_decay_norm_init) + kl_coeff * np.log(
                    args.weight_decay_norm)
            wdn_coeff = np.exp(wdn_coeff)
        else:
            wdn_coeff = args.weight_decay_norm

        loss += bn_loss * wdn_coeff + norm_loss * wdn_coeff

        metrics.update(
            dict(recon_loss=recon_loss,
                 bn_loss=bn_loss,
                 norm_loss=norm_loss,
                 wdn_coeff=wdn_coeff,
                 kl_all=torch.mean(sum(kl_all)),
                 kl_coeff=kl_coeff))

        for key, val in metrics.items():
            metrics[key] = val.detach()

        return output, loss, metrics
Esempio n. 12
0
    def __init__(self, policy_function: ParametricFunction,
                 dt: float, c_entropy: float) -> None:
        OnlineActor.__init__(self, policy_function, dt, c_entropy)

        self._distr_generator = lambda t: Independent(Normal(*t), 1)
Esempio n. 13
0
 def reward(depth):
     if depth > 0:
         return Normal(0, sigmas[depth]).to_discrete(6)
     return 0.