def test_renyi_entropy_3(alpha): """ Test that negative orders raise ValueErrors. """ d = uniform(8) with pytest.raises(ValueError): renyi_entropy(d, alpha)
def test_renyi_entropy_2(alpha): """ Test the Renyi entropy of joint distributions. """ d = Distribution(['00', '11', '22', '33'], [1 / 4] * 4) assert renyi_entropy(d, alpha) == pytest.approx(2) assert renyi_entropy(d, alpha, [0]) == pytest.approx(2) assert renyi_entropy(d, alpha, [1]) == pytest.approx(2)
def test_renyi_entropy_2(alpha): """ Test the Renyi entropy of joint distributions. """ d = Distribution(['00', '11', '22', '33'], [1/4]*4) assert renyi_entropy(d, alpha) == pytest.approx(2) assert renyi_entropy(d, alpha, [0]) == pytest.approx(2) assert renyi_entropy(d, alpha, [1]) == pytest.approx(2)
def test_renyi_entropy_2(): """ Test the Renyi entropy of joint distributions. """ d = Distribution(['00', '11', '22', '33'], [1/4]*4) for alpha in [0, 1/2, 1, 2, 5, np.inf]: yield assert_almost_equal, renyi_entropy(d, alpha), 2 yield assert_almost_equal, renyi_entropy(d, alpha, [0]), 2 yield assert_almost_equal, renyi_entropy(d, alpha, [1]), 2
def test_renyi(alpha): """ Consistency test for Renyi entropy and Renyi divergence """ dist1 = Distribution(['0', '1', '2'], [1/4, 1/2, 1/4]) uniform = Distribution(['0', '1', '2'], [1/3, 1/3, 1/3]) h = renyi_entropy(dist1, alpha) h_u = renyi_entropy(uniform, alpha) div = renyi_divergence(dist1, uniform, alpha) assert h == pytest.approx(h_u - div)
def test_renyi(): """ Consistency test for Renyi entropy and Renyi divergence """ dist1 = Distribution(['0', '1', '2'], [1/4, 1/2, 1/4]) uniform = Distribution(['0', '1', '2'], [1/3, 1/3, 1/3]) alphas = [0, 1, 2, 0.5] for alpha in alphas: h = renyi_entropy(dist1, alpha) h_u = renyi_entropy(uniform, alpha) div = renyi_divergence(dist1, uniform, alpha) assert_almost_equal(h, h_u - div)
def test_renyi(): """ Consistency test for Renyi entropy and Renyi divergence """ dist1 = Distribution(['0', '1', '2'], [1 / 4, 1 / 2, 1 / 4]) uniform = Distribution(['0', '1', '2'], [1 / 3, 1 / 3, 1 / 3]) alphas = [0, 1, 2, 0.5] for alpha in alphas: h = renyi_entropy(dist1, alpha) h_u = renyi_entropy(uniform, alpha) div = renyi_divergence(dist1, uniform, alpha) assert_almost_equal(h, h_u - div)
def test_renyi_entropy_1(alpha): """ Test that the Renyi entropy of a uniform distirbution is indipendent of the order. """ d = uniform(8) assert renyi_entropy(d, alpha) == pytest.approx(3)
def test_renyi_entropy_1(): """ Test that the Renyi entropy of a uniform distirbution is indipendent of the order. """ d = uniform(8) for alpha in [0, 1/2, 1, 2, 5, np.inf]: yield assert_almost_equal, renyi_entropy(d, alpha), 3