def test_dfd(): """ Test distribution_from_data. """ data = [0,0,0,1,1,1] d1 = Distribution([(0,), (1,)], [1/2, 1/2]) d2 = Distribution([(0,0), (0,1), (1,1)], [2/5, 1/5, 2/5]) d1_ = distribution_from_data(data, 1, base='linear') d2_ = distribution_from_data(data, 2, base='linear') assert d1.is_approx_equal(d1_) assert d2.is_approx_equal(d2_)
def test_init11(): outcomes = ['0', '1'] pmf = [1 / 2, 1 / 2] d = Distribution(outcomes, pmf) sd = ScalarDistribution.from_distribution(d) # Different sample space representations assert not d.is_approx_equal(sd)
def test_pr_1(): """ Test """ d1 = Distribution(list(product([0, 1], repeat=4)), [1 / 16] * 16) d2 = pr_box(0.0) assert d1.is_approx_equal(d2)
def test_pr_1(): """ Test """ d1 = Distribution(list(product([0, 1], repeat=4)), [1/16]*16) d2 = pr_box(0.0) assert d1.is_approx_equal(d2)
def test_init11(): outcomes = ["0", "1"] pmf = [1 / 2, 1 / 2] d = Distribution(outcomes, pmf) sd = ScalarDistribution.from_distribution(d) # Different sample space representations assert_false(d.is_approx_equal(sd))
def test_init12(): outcomes = ['0', '1'] pmf = [1/2, 1/2] d = Distribution(outcomes, pmf) sd = ScalarDistribution.from_distribution(d, base=10) d.set_base(10) # Different sample space representations assert_false(d.is_approx_equal(sd))
def test_init12(): outcomes = ['0', '1'] pmf = [1 / 2, 1 / 2] d = Distribution(outcomes, pmf) sd = ScalarDistribution.from_distribution(d, base=10) d.set_base(10) # Different sample space representations assert_false(d.is_approx_equal(sd))
def test_pr_2(): """ Test """ d1 = Distribution([(0, 0, 0, 0), (0, 0, 1, 1), (0, 1, 0, 0), (0, 1, 1, 1), (1, 0, 0, 0), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)], [1 / 8] * 8) d2 = pr_box(1.0, name=True) assert d1.is_approx_equal(d2)
def test_pr_2(): """ Test """ d1 = Distribution([(0, 0, 0, 0), (0, 0, 1, 1), (0, 1, 0, 0), (0, 1, 1, 1), (1, 0, 0, 0), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)], [1/8]*8) d2 = pr_box(1.0, name=True) assert d1.is_approx_equal(d2)