def Angle_calibration(plot1=False, plot2=False, printA=False): plt.close('all') angle_data = np.load(nppath + "angle_cal.npy") X = angle_data[:, 0] # sec Y = angle_data[:, 1] # mRad x_minima = [62, 178, 293, 407] # sec x_maxima = [120, 235, 350] # sec minima, maxima = dg.extrema(X, Y, 10, x_minima, x_maxima) ext = minima + maxima ext = dg.sort(np.array(ext), 0) if plot1 == True: # '0_1_Angles_cal', angles for angle calibration # plots: X , Y , style , label p1 = dp.data(X, Y, '-', 'b', '$\\theta_{comp}$') p2 = dp.data(ext[:, 0], ext[:, 1], 'r*', 'r', 'Extrema') ax = dp.ax([p1, p2], 111, 'time [sec]', "$\\theta_{comp}$ [mRad]", "$\\theta_{comp}$ for Angle Calibration") dp.plot([ax], name=gp + '0_1_Angles_cal') X_data, Y_data = AuxOne(L.val, S.val, ext[:, 1]) m, m_err = df.m_exp(X_data, Y_data), df.sig_m(X_data, Y_data) b, b_err = df.b_exp(X_data, Y_data), df.sig_b(X_data, Y_data) m_err_p, b_err_p = m_err * 100 / m, b_err * 100 / b r2 = df.R2(X_data, Y_data) X_lin = np.linspace(0, max(X_data) + 10, 1000) Y_lin = df.lin_fit(X_data, Y_data, X_lin) if plot2 == True: p1 = dp.data(X_data, Y_data, 'bs', 'b', 'Laser vs Comp') p2 = dp.data(X_lin, Y_lin, 'r-', 'r', 'Linear Fit') n2 = dp.note( "Y = C x + B\nm = %s $\pm$ %s\nb = %s $\pm$ %s\nR$^2$ = %s" % (round(m, 2), round(m_err, 2), round(b, 1), round( b_err, 1), round(r2, 5)), 20, 7, p2.color) ax = dp.ax([p1, p2], 111, '$\\theta_{comp}$ [mRad]', '$\\theta_{laser}$ [mRad]', '$\\theta_{laser}$ vs. $\\theta_{comp}$') ax.notes = [n2] dp.plot([ax], name=gp + '0_2_laser_vs_comp') if printA == True: print("") print("Calibrtion:") print("theta_comp = %s" % X_data) print("theta_laser = %s" % Y_data) print("calibration constant = %s +/- %s (%s)" % (m, m_err, m_err_p)) print("intercept = %s +/- %s (%s)" % (b, b_err, b_err_p)) print("R2 = %s" % r2) print("") return m, m_err
def DrivenG(plot=False, printA=False): plt.close('all') D = np.load(nppath + 'driven.npy') X, Y = D[:, 0] / 1000, (D[:, 1] - eq2) * C.val # data data = dp.data(X, Y, '-', 'b', 'data') # data i_1 = dg.maxima(X, Y, 2.87, 25) x1, y1 = X[i_1], Y[i_1] d1 = dp.data([x1], [y1], '*', 'r', '$X[t_0],\ Y[t_0]$') X2 = X[i_1:] Y2 = Y[i_1:] Y2_env, Y2_man, Y2_fit, par_f = dampedWave(X2, Y2, par_m) d2_man = dp.data(X2, Y2_man, '--', 'm', 'manual fit') d2_env = dp.data(X2, Y2_env, '--', 'c', 'upper envelope') d2_fit = dp.data(X2, Y2_fit, '-', 'r', 'least-square fit') n1 = '$\\theta_e + A e^{-\\gamma t} \cos{\\omega t}$' n2 = '$\\theta_e$ = %s $\pm$ %s mRad' % (round(par_f[0], 1), .1) n3 = 'A = %s $\pm$ %s mRad' % (round(par_f[1], 1), .2) n4 = '$\\gamma$ = %s $\pm$ %s (10$^3$ s)$^{-1}$' % (round(par_f[2], 1), .1) n5 = '$\\omega$ = %s $\pm$ %s (10$^3$ s)$^{-1}$' % (round(par_f[3], 1), .2) note = dp.note(n1 + '\n' + n2 + '\n' + n3 + '\n' + n4 + '\n' + n5, 4, -10, 'r') theta_d = theta_driven(X2, Y2, y1, printA=True) G_d = dg.var('G_d', G(theta_d.val), G_d_err(k, theta_d, R, M_m, m_m, d), 'N m^2 kg^-2') dg.printvar(G_d) print(G_d.val, G_d.err) if plot == True: ax = dp.ax([data, d1, d2_env, d2_man, d2_fit], 111, 'time [$10^3$ sec]', '$\\theta_{laser}$ [mRad]', 'Driven Measurement') ax.notes = [note] dp.plot([ax]) #, name=gp+'0_4_DrivenG') if printA == True: print("Driven G Results:") return theta_d
def DrivenG(N=13, plot=False, printA=False): plt.close('all') D = np.load(nppath + 'driven.npy') X, Y = D[:, 0] / 1000, (D[:, 1] - eq2) * C.val # data data = dp.data(X, Y, '-', 'b', 'data') # data i_1 = dg.maxima(X, Y, 2.87, 25) x1, y1 = X[i_1], Y[i_1] d1 = dp.data([x1], [y1], '*', 'r', '$X[t_0],\ Y[t_0]$') X2 = X[i_1:] Y2 = Y[i_1:] Y2_env, Y2_man, Y2_fit, par_f = dampedWave(X2, Y2, par_m) d2_man = dp.data(X2, Y2_man, '--', 'm', 'manual fit') d2_env = dp.data(X2, Y2_env, '--', 'c', 'upper envelope') d2_fit = dp.data(X2, Y2_fit, '-', 'r', 'least-square fit') n1 = '$\\theta_e + A e^{-\\gamma t} \cos{\\omega t}$' n2 = '$\\theta_e$ = %s $\pm$ %s mRad' % (round(par_f[0], 1), .1) n3 = 'A = %s $\pm$ %s mRad' % (round(par_f[1], 1), .2) n4 = '$\\gamma$ = %s $\pm$ %s (10$^3$ s)$^{-1}$' % (round(par_f[2], 1), .1) n5 = '$\\omega$ = %s $\pm$ %s (10$^3$ s)$^{-1}$' % (round(par_f[3], 1), .2) note = dp.note(n1 + '\n' + n2 + '\n' + n3 + '\n' + n4 + '\n' + n5, 4, -10, 'r') ext, theta_d = theta_driven(X, Y, 6, N=N) d2_ext = dp.data(ext[:, 0], ext[:, 1], '*', 'g', '$\\theta_n$') if plot == True: ax = dp.ax([data, d1, d2_env, d2_man, d2_fit, d2_ext], 111, 'time [$10^3$ sec]', '$\\theta_{laser}$ [mRad]', 'Driven Measurement') ax.notes = [note] dp.plot([ax], name=gp + '0_4_DrivenG') if printA == True: print("fitting parameters") print(par_f) return theta_d
def StaticG(plot=False, printA=False): plt.close('all') # static1 D1 = np.load(nppath + 'static1.npy') X1, Y1 = D1[:, 0] / 1000, (D1[:, 1] - eq1) * C.val # time[s], theta_laser[mRad] x1_1a, y1_1a, x1_1b, y1_1b, XP_1, YP_1 = AuxTwo(.630, 2.25, 'maxima', X1, Y1, 25) x1_2a, y1_2a, x1_2b, y1_2b, XP_2, YP_2 = AuxTwo(2.57, 4.1, 'minima', X1, Y1, 25) x1_3a, y1_3a, x1_3b, y1_3b, XP_3, YP_3 = AuxTwo(4.40, 5.92, 'maxima', X1, Y1, 25) x1_4a, y1_4a, x1_4b, y1_4b, XP_4, YP_4 = AuxTwo(6.40, 7.97, 'minima', X1, Y1, 25) X2 = np.array([x1_1a, x1_1b, x1_2a, x1_2b, x1_3a, x1_3b, x1_4a, x1_4b]) Y2 = np.array([y1_1a, y1_1b, y1_2a, y1_2b, y1_3a, y1_3b, y1_4a, y1_4b]) X3 = np.hstack((XP_1, XP_2, XP_3, XP_4)) Y3 = np.hstack((YP_1, YP_2, YP_3, YP_4)) n1 = dp.note(str(round(np.average(YP_1), 2)), x1_1b - .8, y1_1b + .8, 'r') n2 = dp.note(str(round(np.average(YP_2), 2)), x1_2b - .8, y1_2b - .8, 'r') n3 = dp.note(str(round(np.average(YP_3), 2)), x1_3b - .8, y1_3b + .8, 'r') n4 = dp.note(str(round(np.average(YP_4), 2)), x1_4b - .8, y1_4b - .8, 'r') # static2 D2 = np.load(nppath + 'static2.npy') X4, Y4 = D2[:, 0] / 1000, (D2[:, 1] - eq2) * C.val x2_1a, y2_1a, x2_1b, y2_1b, XP_5, YP_5 = AuxTwo(0.26, 1.8, 'minima', X4, Y4, 25) x2_2a, y2_2a, x2_2b, y2_2b, XP_6, YP_6 = AuxTwo(2.07, 3.58, 'maxima', X4, Y4, 25) X5 = np.array([x2_1a, x2_1b, x2_2a, x2_2b]) Y5 = np.array([y2_1a, y2_1b, y2_2a, y2_2b]) X6 = np.hstack((XP_5, XP_6)) Y6 = np.hstack((YP_5, YP_6)) n5 = dp.note(str(round(np.average(YP_5), 2)), x2_1b - .5, y2_1b - .5, 'r') n6 = dp.note(str(round(np.average(YP_6), 2)), x2_2b - .3, y2_2b + .3, 'r') Ts = np.array([ Period(x1_1b, x1_1a, 1000, 4), Period(x1_2b, x1_2a, 1000, 4), Period(x1_3b, x1_3a, 1000, 4), Period(x1_4b, x1_4a, 1000, 4), Period(x2_1b, x2_1a, 1000, 4), Period(x2_2b, x2_2a, 1000, 4) ]) T = dg.var('T', Ts, 'std', 's') theta_Ds = np.array([ Theta_s(YP_1, YP_2), Theta_s(YP_2, YP_3), Theta_s(YP_3, YP_4), Theta_s(YP_5, YP_6) ]) theta_s = dg.var('theta_s', theta_Ds, 'std', 'mRad') if plot == True: # static1 d1 = dp.data(X1, Y1, '-', 'b', 'data 1') d2 = dp.data(X2, Y2, '*', 'g', '$\\theta_D$ Period') d3 = dp.data(X3, Y3, '-', 'r', '$\\theta_D$') ax1 = dp.ax([d1, d2, d3], 121, 'time [$10^3$ sec]', '$\\theta_{laser}$ [mRad]', 'Static Measurement 1') ax1.notes = [n1, n2, n3, n4] # static2 d4 = dp.data(X4, Y4, '-', 'b', 'data 2') d5 = dp.data(X5, Y5, '*', 'g', '$\\theta_s$ Period') d6 = dp.data(X6, Y6, '-', 'r', '$\\theta_s$') ax2 = dp.ax([d4, d5, d6], 122, 'time [$10^3$ sec]', '$\\theta_{laser}$ [mRad]', 'Static Measurement 2') ax2.notes = [n5, n6] dp.plot([ax1, ax2], name=gp + '0_3_StaticG') if printA == True: print("") print("Static G Results:") print("periods = %s" % T.pval) print("Period: %s +/- %s %s" % (T.pav, T.perr, T.units)) print("Theta_s = %s %s" % theta_s.pval, theta_s.units) print("theta_d_static = %s +/- %s %s" % (theta_s.pav, theta_s.perr, theta_s.units)) print("Gs = %s %s" % (G_s.val, G_s.units)) print("G = %s +/- %s %s" % (G_s.av, G_s.err, G_s.units)) return theta_s