def comment_add(req, blog_id): if not req.user.is_authenticated: return redirect(reverse_lazy("blog:index")) template = "comment_form.html" comment = Comment() comment.author = req.user comment.blog = Blog.objects.get(id=blog_id) if req.method == "POST": form = CommentForm(req.POST, instance=comment) if form.is_valid(): form.save() return redirect(reverse_lazy("blog:view_blog", args=[blog_id])) else: res(form) context = { "page_title": "Add New Comment", "comment_form": CommentForm(instance=comment) } return render(req, template, context)
def download_file(request, file_name): fl_path = 'file' filename = file_name + '.txt' fl = open(fl_path, 'r') mime_type, _ = mimetypes.guess_type(fl_path) response = res(fl, content_type=mime_type) response['Content-Disposition'] = "attachment; filename=%s" % filename return response
def blog_delete(req, blog_id): if not req.user.is_authenticated: return redirect(reverse_lazy("blog:index")) blog = Blog.objects.get(id=blog_id) blog.delete() return redirect(reverse_lazy("blog:index")) return res("Delete blog")
def register(request): if request.method == 'POST': form = FORMS.formRegister(request.POST) if form.is_valid(): data = form.cleaned_data user = User(name=data['name'], phone=data['phone'], email=data['email']) ##################3 sizePublickey = len(PublicKey.objects.all()) + 1 sizeUser = len(User.objects.all()) + 1 n, e, d = generateKey() userid = generateId(sizeUser) idpublickey = generateId(sizePublickey) publicKey = PublicKey(idPublicKey=str(idpublickey), publicKeyE=str(e), publicKeyN=str(n)) user = User(userId=str(userid), name=data['name'], phone=data['phone'], email=data['email']) #Id + id khoa cong khai CI = str(encode(userid, n, d)) + '#' + str(idpublickey) C = int(str(CI).split('#')[0]) P = decode(C, n, e) # return res(P == int.from_bytes(sha512(str(userid).encode()).digest(),byteorder='big')) try: u = User.objects.filter(email=user.email).get().email if (u == user.name): return res( "<script>alert('tai khoan da ton tai')</script>") except User.DoesNotExist: user.save() publicKey.save() return res(CI) return HttpResponseRedirect(reverse('app:index')) return form = FORMS.formRegister() return render(request, "app/register.html", {"form": form})
def index(request): return res("Hello da den voi trang ban hang")
def show(request, ID): return res(f"id cua ban la {ID}")
def show(request): info = {'name': 'arpit', 'age': 30} return res(json.dumps(info))
def del_todo(req, todo_id): obj = models.Todo.objects.using(todoDB).get(id=todo_id) obj.delete() return res('delete')
def add_todo(req, name): obj = models.Todo(content=name) obj.save(using=todoDB) return res('save')
def todo_list(req): flds = ['content'] # obj = serialise(getTodoList(), flds) obj1 = simple_serialise(getTodoList(), flds) # listJson = {'data': obj} return res(obj1, content_type=jsonType)
def hello(request): #最简单的定义url例子 return res("hello world")
def home(request, text, keyword): print(keyword) movie_user_likes = text tic = time.time() df = pd.read_csv("./dataset/movie_dataset.csv") def combine_features(row): return row['keywords'] + " " + row['genres'] features = ['keywords', 'genres'] for feature in features: df[feature] = df[feature].fillna( '') # filling all NaNs with blank string df['combined_features'] = df.apply(combine_features, axis=1) if len(df[df['id'] == text]) > 0: print("success") cv = CountVectorizer() count_matrix = cv.fit_transform(df['combined_features']) cosine_sim = cosine_similarity(count_matrix) def get_id_from_index(index): return df[df.index == index]['id'].values[0] def get_index_from_id(id): return df[df.id == id]['index'].values[0] movie_index = get_index_from_id(movie_user_likes) print(movie_index) similar_movies = list(enumerate(cosine_sim[movie_index])) # accessing the row corresponding to given movie to find all the similarity scores for that movie and then enumerating over it similar_sorted = sorted(similar_movies, key=lambda x: x[1], reverse=True)[1:] similar_movies = similar_sorted[0:10] tac = time.time() print("read time" + str(((tac - tic) * 1000)) + "ms") list_names = [] for names in similar_movies: # list_names.append(df[df.id==get_id_from_index(names[0])]['title'].values[0]) temp = { 'id': str(get_id_from_index(names[0])), 'movie': df[df.id == get_id_from_index(names[0])]['title'].values[0] } list_names.append(temp) result = {'result': list_names} # list.append(text) # print(list) return res(result) else: print("failed") df2 = pd.DataFrame({ "index": [len(df['index'])], "id": [text], "combined_features": [keyword] }) df = df.append(df2, ignore_index=True) cv = CountVectorizer() count_matrix = cv.fit_transform(df['combined_features']) cosine_sim = cosine_similarity(count_matrix) def get_id_from_index(index): return df[df.index == index]['id'].values[0] def get_index_from_id(id): return df[df.id == id]['index'].values[0] movie_index = get_index_from_id(movie_user_likes) print(movie_index) similar_movies = list(enumerate(cosine_sim[movie_index])) # accessing the row corresponding to given movie to find all the similarity scores for that movie and then enumerating over it similar_sorted = sorted(similar_movies, key=lambda x: x[1], reverse=True)[1:] similar_movies = similar_sorted[0:10] tac = time.time() print("read time" + str(((tac - tic) * 1000)) + "ms") list_names = [] for names in similar_movies: # list_names.append(df[df.id==get_id_from_index(names[0])]['title'].values[0]) temp = { 'id': str(get_id_from_index(names[0])), 'movie': df[df.id == get_id_from_index(names[0])]['title'].values[0] } list_names.append(temp) result = {'result': list_names} # list.append(text) # print(list) return res(result)
def about(request): return res("<h2>About</h2")
def success(request): return res("dang ky ok ")
def home(request): return res("dang nhap thanh cong")