Esempio n. 1
0
    def evaluate(self):
        if self._distributed:
            comm.synchronize()
            self._predictions = comm.gather(self._predictions, dst=0)
            self._predictions = list(itertools.chain(*self._predictions))

            if not comm.is_main_process():
                return {}

        if len(self._predictions) == 0:
            self._logger.warning(
                "[COCOEvaluator] Did not receive valid predictions.")
            return {}

        if self._output_dir:
            PathManager.mkdirs(self._output_dir)
            file_path = os.path.join(self._output_dir,
                                     "instances_predictions.pth")
            with PathManager.open(file_path, "wb") as f:
                torch.save(self._predictions, f)

        self._results = OrderedDict()
        if "proposals" in self._predictions[0]:
            self._eval_box_proposals()
        if "instances" in self._predictions[0]:
            self._eval_predictions(set(self._tasks))
        # Copy so the caller can do whatever with results
        return copy.deepcopy(self._results)
Esempio n. 2
0
    def load(self, path: str):
        """
        Load from the given checkpoint. When path points to network file, this
        function has to be called on all ranks.

        Args:
            path (str): path or url to the checkpoint. If empty, will not load
                anything.
        Returns:
            dict:
                extra data loaded from the checkpoint that has not been
                processed. For example, those saved with
                :meth:`.save(**extra_data)`.
        """
        if not path:
            # no checkpoint provided
            self.logger.info(
                "No checkpoint found. Initializing model from scratch")
            return {}
        self.logger.info("Loading checkpoint from {}".format(path))
        if not os.path.isfile(path):
            path = PathManager.get_local_path(path)
            assert PathManager.isfile(path), "Checkpoint {} not found!".format(
                path)

        checkpoint = self._load_file(path)
        self._load_model(checkpoint)
        for key, obj in self.checkpointables.items():
            if key in checkpoint:
                self.logger.info("Loading {} from {}".format(key, path))
                obj.load_state_dict(checkpoint.pop(key))

        # return any further checkpoint data
        return checkpoint
Esempio n. 3
0
def convert_to_coco_json(dataset_name, output_folder="", allow_cached=True):
    """
    Converts dataset into COCO format and saves it to a json file.
    dataset_name must be registered in DatastCatalog and in detectron2's standard format.
    Args:
        dataset_name:
            reference from the config file to the catalogs
            must be registered in DatastCatalog and in detectron2's standard format
        output_folder: where json file will be saved and loaded from
        allow_cached: if json file is already present then skip conversion
    Returns:
        cache_path: path to the COCO-format json file
    """

    # TODO: The dataset or the conversion script *may* change,
    # a checksum would be useful for validating the cached data
    cache_path = os.path.join(output_folder,
                              f"{dataset_name}_coco_format.json")
    PathManager.mkdirs(output_folder)
    if os.path.exists(cache_path) and allow_cached:
        logger.info(
            f"Reading cached annotations in COCO format from:{cache_path} ...")
    else:
        logger.info(
            f"Converting dataset annotations in '{dataset_name}' to COCO format ...)"
        )
        coco_dict = convert_to_coco_dict(dataset_name)

        with PathManager.open(cache_path, "w") as json_file:
            logger.info(f"Caching annotations in COCO format: {cache_path}")
            json.dump(coco_dict, json_file)

    return cache_path
Esempio n. 4
0
 def get_all_checkpoint_files(self):
     """
     Returns:
         list: All available checkpoint files (.pth files) in target
             directory.
     """
     all_model_checkpoints = [
         os.path.join(self.save_dir, file)
         for file in PathManager.ls(self.save_dir)
         if PathManager.isfile(os.path.join(self.save_dir, file))
         and file.endswith(".pth")
     ]
     return all_model_checkpoints
Esempio n. 5
0
def default_setup(cfg, args):
    """
    Perform some basic common setups at the beginning of a job, including:

    1. Set up the dl_lib logger
    2. Log basic information about environment, cmdline arguments, and config
    3. Backup the config to the output directory

    Args:
        cfg (CfgNode): the full config to be used
        args (argparse.NameSpace): the command line arguments to be logged
    """
    output_dir = cfg.OUTPUT_DIR
    if comm.is_main_process() and output_dir:
        PathManager.mkdirs(output_dir)

    rank = comm.get_rank()
    # setup_logger(output_dir, distributed_rank=rank, name="dl_lib")
    logger = setup_logger(output_dir, distributed_rank=rank)

    logger.info("Rank of current process: {}. World size: {}".format(rank, comm.get_world_size()))
    logger.info("Environment info:\n" + collect_env_info())

    logger.info("Command line arguments: " + str(args))
    if hasattr(args, "config_file") and args.config_file != "":
        logger.info(
            "Contents of args.config_file={}:\n{}".format(
                args.config_file, PathManager.open(args.config_file, "r").read()
            )
        )

    logger.info("Running with full config:\n{}".format(cfg))
    base_config = cfg.__class__.__base__()
    logger.info("different config with base class:\n{}".format(cfg.show_diff(base_config)))
    # if comm.is_main_process() and output_dir:
    #     # Note: some of our scripts may expect the existence of
    #     # config.yaml in output directory
    #     path = os.path.join(output_dir, "config.yaml")
    #     with PathManager.open(path, "w") as f:
    #         f.write(cfg.dump())
    #     logger.info("Full config saved to {}".format(os.path.abspath(path)))

    # make sure each worker has a different, yet deterministic seed if specified
    seed_all_rng(None if cfg.SEED < 0 else cfg.SEED + rank)

    # cudnn benchmark has large overhead. It shouldn't be used considering the small size of
    # typical validation set.
    if not (hasattr(args, "eval_only") and args.eval_only):
        torch.backends.cudnn.benchmark = cfg.CUDNN_BENCHMARK

    return cfg, logger
    def _load_file(self, filename):
        if filename.endswith(".pkl"):
            with PathManager.open(filename, "rb") as f:
                data = pickle.load(f, encoding="latin1")
            if "model" in data and "__author__" in data:
                # file is in dl_lib model zoo format
                self.logger.info("Reading a file from '{}'".format(
                    data["__author__"]))
                return data
            else:
                # assume file is from Caffe2 / Detectron1 model zoo
                if "blobs" in data:
                    # Detection models have "blobs", but ImageNet models don't
                    data = data["blobs"]
                data = {
                    k: v
                    for k, v in data.items() if not k.endswith("_momentum")
                }
                return {
                    "model": data,
                    "__author__": "Caffe2",
                    "matching_heuristics": True
                }

        loaded = super()._load_file(filename)  # load native pth checkpoint
        if "model" not in loaded:
            loaded = {"model": loaded}
        return loaded
Esempio n. 7
0
 def has_checkpoint(self):
     """
     Returns:
         bool: whether a checkpoint exists in the target directory.
     """
     save_file = os.path.join(self.save_dir, "last_checkpoint")
     return PathManager.exists(save_file)
Esempio n. 8
0
def load_cityscapes_semantic(image_dir, gt_dir):
    """
    Args:
        image_dir (str): path to the raw dataset. e.g., "~/cityscapes/leftImg8bit/train".
        gt_dir (str): path to the raw annotations. e.g., "~/cityscapes/gtFine/train".

    Returns:
        list[dict]: a list of dict, each has "file_name" and
            "sem_seg_file_name".
    """
    ret = []
    for image_file in glob.glob(os.path.join(image_dir, "**/*.png")):
        suffix = "leftImg8bit.png"
        assert image_file.endswith(suffix)
        prefix = image_dir

        label_file = gt_dir + image_file[
            len(prefix):-len(suffix)] + "gtFine_labelTrainIds.png"
        assert os.path.isfile(
            label_file
        ), "Please generate labelTrainIds.png with cityscapesscripts/preparation/createTrainIdLabelImgs.py"  # noqa

        json_file = gt_dir + image_file[
            len(prefix):-len(suffix)] + "gtFine_polygons.json"

        with PathManager.open(json_file, "r") as f:
            jsonobj = json.load(f)
        ret.append({
            "file_name": image_file,
            "sem_seg_file_name": label_file,
            "height": jsonobj["imgHeight"],
            "width": jsonobj["imgWidth"],
        })
    return ret
Esempio n. 9
0
 def __init__(self, json_file, window_size=20):
     """
     Args:
         json_file (str): path to the json file. New data will be appended if the file exists.
         window_size (int): the window size of median smoothing for the scalars whose
             `smoothing_hint` are True.
     """
     self._file_handle = PathManager.open(json_file, "a")
     self._window_size = window_size
Esempio n. 10
0
    def process(self, inputs, outputs):
        """
        Args:
            inputs: the inputs to a model.
                It is a list of dicts. Each dict corresponds to an image and
                contains keys like "height", "width", "file_name".
            outputs: the outputs of a model. It is either list of semantic segmentation predictions
                (Tensor [H, W]) or list of dicts with key "sem_seg" that contains semantic
                segmentation prediction in the same format.
        """
        for input, output in zip(inputs, outputs):
            if "flops" in output:
                flops = output["flops"]
                self._real_flops.append(flops["real_flops"])
                self._expt_flops.append(flops["expt_flops"])
            output = output["sem_seg"].argmax(dim=0).to(self._cpu_device)
            pred = np.array(output, dtype=np.int)
            # Cityscapes test output
            if 'cityscapes' in self._dataset_name and 'test' in self._dataset_name:
                pred_converg = pred.copy()
                f_name = input["file_name"].split('/')[-1]
                pred_unique = list(np.unique(pred_converg))
                pred_unique.sort(reverse=True)
                for i in range(len(pred_unique)):
                    pred_converg[pred_converg == int(pred_unique[i])] \
                        = trainId2label[int(pred_unique[i])].id
                save_dir = os.path.join(self._output_dir, 'test_dir')
                if not os.path.exists(save_dir):
                    PathManager.mkdirs(save_dir)

                cv2.imwrite(os.path.join(save_dir, f_name), pred_converg)

            with PathManager.open(
                    self.input_file_to_gt_file[input["file_name"]], "rb") as f:
                gt = np.array(Image.open(f), dtype=np.int)

            gt[gt == self._ignore_label] = self._num_classes

            self._conf_matrix += np.bincount(
                self._N * pred.reshape(-1) + gt.reshape(-1),
                minlength=self._N**2).reshape(self._N, self._N)

            self._predictions.extend(
                self.encode_json_sem_seg(pred, input["file_name"]))
Esempio n. 11
0
def load_proposals_into_dataset(dataset_dicts, proposal_file):
    r"""
    Load precomputed object proposals into the dataset.

    The proposal file should be a pickled dict with the following keys:

    - "ids": list[int] or list[str], the image ids
    - "boxes": list[np.ndarray], each is an Nx4 array of boxes corresponding to the image id
    - "objectness_logits": list[np.ndarray], each is an N sized array of objectness scores
        corresponding to the boxes.
    - "bbox_mode": the BoxMode of the boxes array. Defaults to ``BoxMode.XYXY_ABS``.

    Args:
        dataset_dicts (list[dict]): annotations in dl_lib Dataset format.
        proposal_file (str): file path of pre-computed proposals, in pkl format.

    Returns:
        list[dict]: the same format as dataset_dicts, but added proposal field.
    """
    logger = logging.getLogger(__name__)
    logger.info("Loading proposals from: {}".format(proposal_file))

    with PathManager.open(proposal_file, "rb") as f:
        proposals = pickle.load(f, encoding="latin1")

    # Rename the key names in D1 proposal files
    rename_keys = {"indexes": "ids", "scores": "objectness_logits"}
    for key in rename_keys:
        if key in proposals:
            proposals[rename_keys[key]] = proposals.pop(key)

    # Fetch the indexes of all proposals that are in the dataset
    # Convert image_id to str since they could be int.
    img_ids = set({str(record["image_id"]) for record in dataset_dicts})
    id_to_index = {
        str(id): i
        for i, id in enumerate(proposals["ids"]) if str(id) in img_ids
    }

    # Assuming default bbox_mode of precomputed proposals are 'XYXY_ABS'
    bbox_mode = BoxMode(proposals["bbox_mode"]
                        ) if "bbox_mode" in proposals else BoxMode.XYXY_ABS

    for record in dataset_dicts:
        # Get the index of the proposal
        i = id_to_index[str(record["image_id"])]

        boxes = proposals["boxes"][i]
        objectness_logits = proposals["objectness_logits"][i]
        # Sort the proposals in descending order of the scores
        inds = objectness_logits.argsort()[::-1]
        record["proposal_boxes"] = boxes[inds]
        record["proposal_objectness_logits"] = objectness_logits[inds]
        record["proposal_bbox_mode"] = bbox_mode

    return dataset_dicts
Esempio n. 12
0
    def tag_last_checkpoint(self, last_filename_basename: str):
        """
        Tag the last checkpoint.

        Args:
            last_filename_basename (str): the basename of the last filename.
        """
        save_file = os.path.join(self.save_dir, "last_checkpoint")
        with PathManager.open(save_file, "w") as f:
            f.write(last_filename_basename)
Esempio n. 13
0
    def _eval_predictions(self, tasks):
        """
        Evaluate self._predictions on the given tasks.
        Fill self._results with the metrics of the tasks.
        """
        self._logger.info("Preparing results for COCO format ...")
        self._coco_results = list(
            itertools.chain(*[x["instances"] for x in self._predictions]))

        # unmap the category ids for COCO
        if hasattr(self._metadata, "thing_dataset_id_to_contiguous_id"):
            reverse_id_mapping = {
                v: k
                for k, v in
                self._metadata.thing_dataset_id_to_contiguous_id.items()
            }
            for result in self._coco_results:
                category_id = result["category_id"]
                assert (
                    category_id in reverse_id_mapping
                ), "A prediction has category_id={}, which is not available in the dataset.".format(
                    category_id)
                result["category_id"] = reverse_id_mapping[category_id]

        if self._output_dir:
            file_path = os.path.join(self._output_dir,
                                     "coco_instances_results.json")
            self._logger.info("Saving results to {}".format(file_path))
            with PathManager.open(file_path, "w") as f:
                f.write(json.dumps(self._coco_results))
                f.flush()

        if not self._do_evaluation:
            self._logger.info("Annotations are not available for evaluation.")
            return

        self._logger.info("Evaluating predictions ...")
        for task in sorted(tasks):
            coco_eval = (
                _evaluate_predictions_on_coco(
                    self._coco_api,
                    self._coco_results,
                    task,
                    kpt_oks_sigmas=self._kpt_oks_sigmas)
                if len(self._coco_results) > 0 else
                None  # cocoapi does not handle empty results very well
            )

            res = self._derive_coco_results(
                coco_eval,
                task,
                class_names=self._metadata.get("thing_classes"))
            self._results[task] = res
Esempio n. 14
0
def load_voc_instances(dirname: str, split: str):
    """
    Load Pascal VOC detection annotations to dl_lib format.

    Args:
        dirname: Contain "Annotations", "ImageSets", "JPEGImages"
        split (str): one of "train", "test", "val", "trainval"
    """
    with PathManager.open(
            os.path.join(dirname, "ImageSets", "Main", split + ".txt")) as f:
        fileids = np.loadtxt(f, dtype=np.str)

    dicts = []
    for fileid in fileids:
        anno_file = os.path.join(dirname, "Annotations", fileid + ".xml")
        jpeg_file = os.path.join(dirname, "JPEGImages", fileid + ".jpg")

        tree = ET.parse(anno_file)

        r = {
            "file_name": jpeg_file,
            "image_id": fileid,
            "height": int(tree.findall("./size/height")[0].text),
            "width": int(tree.findall("./size/width")[0].text),
        }
        instances = []

        for obj in tree.findall("object"):
            cls = obj.find("name").text
            # We include "difficult" samples in training.
            # Based on limited experiments, they don't hurt accuracy.
            # difficult = int(obj.find("difficult").text)
            # if difficult == 1:
            # continue
            bbox = obj.find("bndbox")
            bbox = [
                float(bbox.find(x).text)
                for x in ["xmin", "ymin", "xmax", "ymax"]
            ]
            # Original annotations are integers in the range [1, W or H]
            # Assuming they mean 1-based pixel indices (inclusive),
            # a box with annotation (xmin=1, xmax=W) covers the whole image.
            # In coordinate space this is represented by (xmin=0, xmax=W)
            bbox[0] -= 1.0
            bbox[1] -= 1.0
            instances.append({
                "category_id": CLASS_NAMES.index(cls),
                "bbox": bbox,
                "bbox_mode": BoxMode.XYXY_ABS
            })
        r["annotations"] = instances
        dicts.append(r)
    return dicts
Esempio n. 15
0
 def get_checkpoint_file(self):
     """
     Returns:
         str: The latest checkpoint file in target directory.
     """
     save_file = os.path.join(self.save_dir, "last_checkpoint")
     try:
         with PathManager.open(save_file, "r") as f:
             last_saved = f.read().strip()
     except IOError:
         # if file doesn't exist, maybe because it has just been
         # deleted by a separate process
         return ""
     return os.path.join(self.save_dir, last_saved)
Esempio n. 16
0
    def _eval_box_proposals(self):
        """
        Evaluate the box proposals in self._predictions.
        Fill self._results with the metrics for "box_proposals" task.
        """
        if self._output_dir:
            # Saving generated box proposals to file.
            # Predicted box_proposals are in XYXY_ABS mode.
            bbox_mode = BoxMode.XYXY_ABS.value
            ids, boxes, objectness_logits = [], [], []
            for prediction in self._predictions:
                ids.append(prediction["image_id"])
                boxes.append(
                    prediction["proposals"].proposal_boxes.tensor.numpy())
                objectness_logits.append(
                    prediction["proposals"].objectness_logits.numpy())

            proposal_data = {
                "boxes": boxes,
                "objectness_logits": objectness_logits,
                "ids": ids,
                "bbox_mode": bbox_mode,
            }
            with PathManager.open(
                    os.path.join(self._output_dir, "box_proposals.pkl"),
                    "wb") as f:
                pickle.dump(proposal_data, f)

        if not self._do_evaluation:
            self._logger.info("Annotations are not available for evaluation.")
            return

        self._logger.info("Evaluating bbox proposals ...")
        res = {}
        areas = {"all": "", "small": "s", "medium": "m", "large": "l"}
        for limit in [100, 1000]:
            for area, suffix in areas.items():
                stats = _evaluate_box_proposals(self._predictions,
                                                self._coco_api,
                                                area=area,
                                                limit=limit)
                key = "AR{}@{:d}".format(suffix, limit)
                res[key] = float(stats["ar"].item() * 100)
        self._logger.info("Proposal metrics: \n" + create_small_table(res))
        self._results["box_proposals"] = res
Esempio n. 17
0
    def __init__(self,
                 dataset_name,
                 cfg,
                 distributed,
                 output_dir=None,
                 dump=False):
        """
        Args:
            dataset_name (str): name of the dataset to be evaluated.
                It must have either the following corresponding metadata:


                    "json_file": the path to the COCO format annotation
                Or it must be in detectron2's standard dataset format
                so it can be converted to COCO format automatically.
            cfg (CfgNode): config instance
            distributed (True): if True, will collect results from all ranks for evaluation.
                Otherwise, will evaluate the results in the current process.
            output_dir (str): optional, an output directory to dump results.
        """
        self._dump = dump
        self._tasks = self._tasks_from_config(cfg)
        self._distributed = distributed
        self._output_dir = output_dir

        self._cpu_device = torch.device("cpu")
        self._logger = logging.getLogger(__name__)

        self._metadata = MetadataCatalog.get(dataset_name)
        if not hasattr(self._metadata, "json_file"):
            self._logger.warning(
                f"json_file was not found in MetaDataCatalog for '{dataset_name}'"
            )

            cache_path = convert_to_coco_json(dataset_name, output_dir)
            self._metadata.json_file = cache_path

        json_file = PathManager.get_local_path(self._metadata.json_file)
        with contextlib.redirect_stdout(io.StringIO()):
            self._coco_api = COCO(json_file)

        self._kpt_oks_sigmas = cfg.TEST.KEYPOINT_OKS_SIGMAS
        # Test set json files do not contain annotations (evaluation must be
        # performed using the COCO evaluation server).
        self._do_evaluation = "annotations" in self._coco_api.dataset
Esempio n. 18
0
 def after_step(self):
     if self._profiler is None:
         return
     self._profiler.__exit__(None, None, None)
     out_file = os.path.join(
         self._output_dir,
         "profiler-trace-iter{}.json".format(self.trainer.iter))
     if "://" not in out_file:
         self._profiler.export_chrome_trace(out_file)
     else:
         # Support non-posix filesystems
         with tempfile.TemporaryDirectory(prefix="dl_lib_profiler") as d:
             tmp_file = os.path.join(d, "tmp.json")
             self._profiler.export_chrome_trace(tmp_file)
             with open(tmp_file) as f:
                 content = f.read()
         with PathManager.open(out_file, "w") as f:
             f.write(content)
def read_image(file_name, format=None):
    """
    Read an image into the given format.
    Will apply rotation and flipping if the image has such exif information.

    Args:
        file_name (str): image file path
        format (str): one of the supported image modes in PIL, or "BGR"

    Returns:
        image (np.ndarray): an HWC image
    """
    with PathManager.open(file_name, "rb") as f:
        image = Image.open(f)

        image = ImageOps.exif_transpose(image)
        # capture and ignore this bug: https://github.com/python-pillow/Pillow/issues/3973
        try:
            image = ImageOps.exif_transpose(image)
        except Exception:
            pass

        if format is not None:
            # PIL only supports RGB, so convert to RGB and flip channels over below
            conversion_format = format
            if format == "BGR":
                conversion_format = "RGB"
            image = image.convert(conversion_format)
        image = np.asarray(image)
        if format == "BGR":
            # flip channels if needed
            image = image[:, :, ::-1]
        # PIL squeezes out the channel dimension for "L", so make it HWC
        if format == "L":
            image = np.expand_dims(image, -1)
        return image
Esempio n. 20
0
    def save(self, name: str, **kwargs: dict):
        """
        Dump model and checkpointables to a file.

        Args:
            name (str): name of the file.
            kwargs (dict): extra arbitrary data to save.
        """
        if not self.save_dir or not self.save_to_disk:
            return

        data = {}
        data["model"] = self.model.state_dict()
        for key, obj in self.checkpointables.items():
            data[key] = obj.state_dict()
        data.update(kwargs)

        basename = "{}.pth".format(name)
        save_file = os.path.join(self.save_dir, basename)
        assert os.path.basename(save_file) == basename, basename
        self.logger.info("Saving checkpoint to {}".format(save_file))
        with PathManager.open(save_file, "wb") as f:
            torch.save(data, f)
        self.tag_last_checkpoint(basename)
Esempio n. 21
0
 def _get_local_path(self, path):
     logger = logging.getLogger(__name__)
     catalog_path = ModelCatalog.get(path[len(self.PREFIX):])
     logger.info("Catalog entry {} points to {}".format(path, catalog_path))
     return PathManager.get_local_path(catalog_path)
Esempio n. 22
0
def setup_logger(output=None,
                 distributed_rank=0,
                 *,
                 color=True,
                 name="dl_lib",
                 abbrev_name=None):
    """
    generate a logger with given setting

    Args:
        output (str): a file name or a directory to save log. If None, will not save log file.
            If ends with ".txt" or ".log", assumed to be a file name.
            Otherwise, logs will be saved to `output/log.txt`.
        name (str): the root module name of this logger
        abbrev_name (str): an abbreviation of the module, to avoid long names in logs.
            Set to "" to not log the root module in logs.
            By default, will abbreviate "dl_lib" to "d2" and leave other
            modules unchanged.
    """
    logger = logging.getLogger(name)
    logger.setLevel(logging.DEBUG)
    logger.propagate = False

    if abbrev_name is None:
        abbrev_name = "c2" if name == "dl_lib" else name

    plain_formatter = logging.Formatter(
        "[%(asctime)s] %(name)s %(levelname)s: %(message)s",
        datefmt="%m/%d %H:%M:%S")
    # stdout logging: master only
    if distributed_rank == 0:
        ch = logging.StreamHandler(stream=sys.stdout)
        ch.setLevel(logging.DEBUG)
        if color:
            formatter = _ColorfulFormatter(
                colored("[%(asctime)s %(name)s]: ", "green") + "%(message)s",
                datefmt="%m/%d %H:%M:%S",
                root_name=name,
                abbrev_name=str(abbrev_name),
            )
        else:
            formatter = plain_formatter
        ch.setFormatter(formatter)
        logger.addHandler(ch)

    # file logging: all workers
    if output is not None:
        if output.endswith(".txt") or output.endswith(".log"):
            filename = output
        else:
            filename = os.path.join(output, "log.txt")
        if distributed_rank > 0:
            filename = filename + ".rank{}".format(distributed_rank)
        PathManager.mkdirs(os.path.dirname(filename))

        fh = logging.StreamHandler(_cached_log_stream(filename))
        fh.setLevel(logging.DEBUG)
        fh.setFormatter(plain_formatter)
        logger.addHandler(fh)

    return logger
Esempio n. 23
0
def _cached_log_stream(filename):
    return PathManager.open(filename, "a")
Esempio n. 24
0
    def evaluate(self):
        """
        Evaluates standard semantic segmentation metrics (http://cocodataset.org/#stuff-eval):
        * Mean intersection-over-union averaged across classes (mIoU)
        * Frequency Weighted IoU (fwIoU)
        * Mean pixel accuracy averaged across classes (mACC)
        * Pixel Accuracy (pACC)
        """
        if self._distributed:
            synchronize()
            conf_matrix_list = all_gather(self._conf_matrix)
            self._predictions = all_gather(self._predictions)
            self._predictions = list(itertools.chain(*self._predictions))
            self._real_flops = all_gather(self._real_flops)
            self._real_flops = list(itertools.chain(*self._real_flops))
            self._expt_flops = all_gather(self._expt_flops)
            self._expt_flops = list(itertools.chain(*self._expt_flops))
            if not is_main_process():
                return

            self._conf_matrix = np.zeros_like(self._conf_matrix)
            for conf_matrix in conf_matrix_list:
                self._conf_matrix += conf_matrix

        if self._output_dir:
            PathManager.mkdirs(self._output_dir)
            file_path = os.path.join(self._output_dir,
                                     "sem_seg_predictions.json")
            with PathManager.open(file_path, "w") as f:
                f.write(json.dumps(self._predictions))

        acc = np.zeros(self._num_classes, dtype=np.float)
        iou = np.zeros(self._num_classes, dtype=np.float)
        tp = self._conf_matrix.diagonal()[:-1].astype(np.float)
        pos_gt = np.sum(self._conf_matrix[:-1, :-1], axis=0).astype(np.float)
        class_weights = pos_gt / np.sum(pos_gt)
        pos_pred = np.sum(self._conf_matrix[:-1, :-1], axis=1).astype(np.float)
        acc_valid = pos_gt > 0
        acc[acc_valid] = tp[acc_valid] / pos_gt[acc_valid]
        iou_valid = (pos_gt + pos_pred) > 0
        union = pos_gt + pos_pred - tp
        iou[acc_valid] = tp[acc_valid] / union[acc_valid]
        macc = np.sum(acc) / np.sum(acc_valid)
        miou = np.sum(iou) / np.sum(iou_valid)
        fiou = np.sum(iou * class_weights)
        pacc = np.sum(tp) / np.sum(pos_gt)

        res = {}
        res["mIoU"] = 100 * miou
        res["fwIoU"] = 100 * fiou
        res["mACC"] = 100 * macc
        res["pACC"] = 100 * pacc

        # add flops calculation
        if len(self._real_flops) > 0 and len(self._expt_flops) > 0:
            res["mean_real_flops"] = (sum(self._real_flops) /
                                      len(self._real_flops)) / 1e3
            res["max_real_flops"] = max(self._real_flops) / 1e3
            res["min_real_flops"] = min(self._real_flops) / 1e3
            res["mean_expt_flops"] = (sum(self._expt_flops) /
                                      len(self._expt_flops)) / 1e3
            res["max_expt_flops"] = max(self._expt_flops) / 1e3
            res["min_expt_flops"] = min(self._expt_flops) / 1e3

        if self._output_dir:
            file_path = os.path.join(self._output_dir,
                                     "sem_seg_evaluation.pth")
            with PathManager.open(file_path, "wb") as f:
                torch.save(res, f)
        results = OrderedDict({"sem_seg": res})
        self._logger.info(results)
        return results
Esempio n. 25
0
    def __call__(self, dataset_dict):
        """
        Args:
            dataset_dict (dict): Metadata of one image, in dl_lib Dataset format.

        Returns:
            dict: a format that builtin models in dl_lib accept
        """
        dataset_dict = copy.deepcopy(
            dataset_dict)  # it will be modified by code below
        # USER: Write your own image loading if it's not from a file
        image = utils.read_image(dataset_dict["file_name"],
                                 format=self.img_format)
        utils.check_image_size(dataset_dict, image)

        if "annotations" not in dataset_dict:
            image, transforms = T.apply_transform_gens(
                ([self.crop_gen] if self.crop_gen else []) + self.tfm_gens,
                image)
        else:
            # Crop around an instance if there are instances in the image.
            # USER: Remove if you don't use cropping
            if self.crop_gen:
                crop_tfm = utils.gen_crop_transform_with_instance(
                    self.crop_gen.get_crop_size(image.shape[:2]),
                    image.shape[:2],
                    np.random.choice(dataset_dict["annotations"]),
                )
                image = crop_tfm.apply_image(image)
            image, transforms = T.apply_transform_gens(self.tfm_gens, image)
            if self.crop_gen:
                transforms = crop_tfm + transforms

        image_shape = image.shape[:2]  # h, w

        # Pytorch's dataloader is efficient on torch.Tensor due to shared-memory,
        # but not efficient on large generic data structures due to the use of pickle & mp.Queue.
        # Therefore it's important to use torch.Tensor.
        dataset_dict["image"] = torch.as_tensor(
            image.transpose(2, 0, 1).astype("float32"))
        # Can use uint8 if it turns out to be slow some day

        # USER: Remove if you don't use pre-computed proposals.
        if self.load_proposals:
            utils.transform_proposals(dataset_dict, image_shape, transforms,
                                      self.min_box_side_len,
                                      self.proposal_topk)

        if not self.is_train and not self.eval_with_gt:
            dataset_dict.pop("annotations", None)
            dataset_dict.pop("sem_seg_file_name", None)
            return dataset_dict

        if "annotations" in dataset_dict:
            # USER: Modify this if you want to keep them for some reason.
            for anno in dataset_dict["annotations"]:
                if not self.mask_on:
                    anno.pop("segmentation", None)
                if not self.keypoint_on:
                    anno.pop("keypoints", None)

            # USER: Implement additional transformations if you have other types of data
            annos = [
                utils.transform_instance_annotations(
                    obj,
                    transforms,
                    image_shape,
                    keypoint_hflip_indices=self.keypoint_hflip_indices,
                    dot_number=self.dot_number)
                for obj in dataset_dict.pop("annotations")
                if obj.get("iscrowd", 0) == 0
            ]
            instances = utils.annotations_to_instances(
                annos, image_shape, mask_format=self.mask_format)
            # Create a tight bounding box from masks, useful when image is cropped
            if self.crop_gen and instances.has("gt_masks"):
                instances.gt_boxes = instances.gt_masks.get_bounding_boxes()
            dataset_dict["instances"] = utils.filter_empty_instances(instances)

        # USER: Remove if you don't do semantic/panoptic segmentation.
        if "sem_seg_file_name" in dataset_dict:
            with PathManager.open(dataset_dict.pop("sem_seg_file_name"),
                                  "rb") as f:
                sem_seg_gt = Image.open(f)
                sem_seg_gt = np.asarray(sem_seg_gt, dtype="uint8")
            sem_seg_gt = transforms.apply_segmentation(sem_seg_gt)
            sem_seg_gt = torch.as_tensor(sem_seg_gt.astype("long"))
            dataset_dict["sem_seg"] = sem_seg_gt
        return dataset_dict
Esempio n. 26
0
def cityscapes_files_to_dict(files, from_json, to_polygons):
    """
    Parse cityscapes annotation files to a dict.

    Args:
        files (tuple): consists of (image_file, instance_id_file, label_id_file, json_file)
        from_json (bool): whether to read annotations from the raw json file or the png files.
        to_polygons (bool): whether to represent the segmentation as polygons
            (COCO's format) instead of masks (cityscapes's format).

    Returns:
        A dict in dl_lib Dataset format.
    """
    from cityscapesscripts.helpers.labels import id2label, name2label

    image_file, instance_id_file, _, json_file = files

    annos = []

    if from_json:
        from shapely.geometry import MultiPolygon, Polygon

        with PathManager.open(json_file, "r") as f:
            jsonobj = json.load(f)
        ret = {
            "file_name": image_file,
            "image_id": os.path.basename(image_file),
            "height": jsonobj["imgHeight"],
            "width": jsonobj["imgWidth"],
        }

        # `polygons_union` contains the union of all valid polygons.
        polygons_union = Polygon()

        # CityscapesScripts draw the polygons in sequential order
        # and each polygon *overwrites* existing ones. See
        # (https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/preparation/json2instanceImg.py) # noqa
        # We use reverse order, and each polygon *avoids* early ones.
        # This will resolve the ploygon overlaps in the same way as CityscapesScripts.
        for obj in jsonobj["objects"][::-1]:
            if "deleted" in obj:  # cityscapes data format specific
                continue
            label_name = obj["label"]

            try:
                label = name2label[label_name]
            except KeyError:
                if label_name.endswith("group"):  # crowd area
                    label = name2label[label_name[:-len("group")]]
                else:
                    raise
            if label.id < 0:  # cityscapes data format
                continue

            # Cityscapes's raw annotations uses integer coordinates
            # Therefore +0.5 here
            poly_coord = np.asarray(obj["polygon"], dtype="f4") + 0.5
            # CityscapesScript uses PIL.ImageDraw.polygon to rasterize
            # polygons for evaluation. This function operates in integer space
            # and draws each pixel whose center falls into the polygon.
            # Therefore it draws a polygon which is 0.5 "fatter" in expectation.
            # We therefore dilate the input polygon by 0.5 as our input.
            poly = Polygon(poly_coord).buffer(0.5, resolution=4)

            if not label.hasInstances or label.ignoreInEval:
                # even if we won't store the polygon it still contributes to overlaps resolution
                polygons_union = polygons_union.union(poly)
                continue

            # Take non-overlapping part of the polygon
            poly_wo_overlaps = poly.difference(polygons_union)
            if poly_wo_overlaps.is_empty:
                continue
            polygons_union = polygons_union.union(poly)

            anno = {}
            anno["iscrowd"] = label_name.endswith("group")
            anno["category_id"] = label.id

            if isinstance(poly_wo_overlaps, Polygon):
                poly_list = [poly_wo_overlaps]
            elif isinstance(poly_wo_overlaps, MultiPolygon):
                poly_list = poly_wo_overlaps.geoms
            else:
                raise NotImplementedError(
                    "Unknown geometric structure {}".format(poly_wo_overlaps))

            poly_coord = []
            for poly_el in poly_list:
                # COCO API can work only with exterior boundaries now, hence we store only them.
                # TODO: store both exterior and interior boundaries once other parts of the
                # codebase support holes in polygons.
                poly_coord.append(list(chain(*poly_el.exterior.coords)))
            anno["segmentation"] = poly_coord
            (xmin, ymin, xmax, ymax) = poly_wo_overlaps.bounds

            anno["bbox"] = (xmin, ymin, xmax, ymax)
            anno["bbox_mode"] = BoxMode.XYXY_ABS

            annos.append(anno)
    else:
        # See also the official annotation parsing scripts at
        # https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/evaluation/instances2dict.py  # noqa
        with PathManager.open(instance_id_file, "rb") as f:
            inst_image = np.asarray(Image.open(f), order="F")
        # ids < 24 are stuff labels (filtering them first is about 5% faster)
        flattened_ids = np.unique(inst_image[inst_image >= 24])

        ret = {
            "file_name": image_file,
            "image_id": os.path.basename(image_file),
            "height": inst_image.shape[0],
            "width": inst_image.shape[1],
        }

        for instance_id in flattened_ids:
            # For non-crowd annotations, instance_id // 1000 is the label_id
            # Crowd annotations have <1000 instance ids
            label_id = instance_id // 1000 if instance_id >= 1000 else instance_id
            label = id2label[label_id]
            if not label.hasInstances or label.ignoreInEval:
                continue

            anno = {}
            anno["iscrowd"] = instance_id < 1000
            anno["category_id"] = label.id

            mask = np.asarray(inst_image == instance_id,
                              dtype=np.uint8,
                              order="F")

            inds = np.nonzero(mask)
            ymin, ymax = inds[0].min(), inds[0].max()
            xmin, xmax = inds[1].min(), inds[1].max()
            anno["bbox"] = (xmin, ymin, xmax, ymax)
            if xmax <= xmin or ymax <= ymin:
                continue
            anno["bbox_mode"] = BoxMode.XYXY_ABS
            if to_polygons:
                # This conversion comes from D4809743 and D5171122,
                # when Mask-RCNN was first developed.
                contours = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
                                            cv2.CHAIN_APPROX_NONE)[-2]
                polygons = [
                    c.reshape(-1).tolist() for c in contours if len(c) >= 3
                ]
                # opencv's can produce invalid polygons
                if len(polygons) == 0:
                    continue
                anno["segmentation"] = polygons
            else:
                anno["segmentation"] = mask_util.encode(mask[:, :, None])[0]
            annos.append(anno)
    ret["annotations"] = annos
    return ret
Esempio n. 27
0
 def _open(self, path, mode="r", **kwargs):
     return PathManager.open(self._get_local_path(path), mode, **kwargs)
Esempio n. 28
0
def load_coco_json(json_file,
                   image_root,
                   dataset_name=None,
                   extra_annotation_keys=None):
    """
    Load a json file with COCO's instances annotation format.
    Currently supports instance detection, instance segmentation,
    and person keypoints annotations.

    Args:
        json_file (str): full path to the json file in COCO instances annotation format.
        image_root (str): the directory where the images in this json file exists.
        dataset_name (str): the name of the dataset (e.g., coco_2017_train).
            If provided, this function will also put "thing_classes" into
            the metadata associated with this dataset.
        extra_annotation_keys (list[str]): list of per-annotation keys that should also be
            loaded into the dataset dict (besides "iscrowd", "bbox", "keypoints",
            "category_id", "segmentation"). The values for these keys will be returned as-is.
            For example, the densepose annotations are loaded in this way.

    Returns:
        list[dict]: a list of dicts in dl_lib standard format. (See
        `Using Custom Datasets </tutorials/datasets.html>`_ )

    Notes:
        1. This function does not read the image files.
           The results do not have the "image" field.
    """
    from pycocotools.coco import COCO

    timer = Timer()
    json_file = PathManager.get_local_path(json_file)
    with contextlib.redirect_stdout(io.StringIO()):
        coco_api = COCO(json_file)
    if timer.seconds() > 1:
        logger.info("Loading {} takes {:.2f} seconds.".format(
            json_file, timer.seconds()))

    id_map = None
    if dataset_name is not None:
        meta = MetadataCatalog.get(dataset_name)
        cat_ids = sorted(coco_api.getCatIds())
        cats = coco_api.loadCats(cat_ids)
        # The categories in a custom json file may not be sorted.
        thing_classes = [
            c["name"] for c in sorted(cats, key=lambda x: x["id"])
        ]
        meta.thing_classes = thing_classes

        # In COCO, certain category ids are artificially removed,
        # and by convention they are always ignored.
        # We deal with COCO's id issue and translate
        # the category ids to contiguous ids in [0, 80).

        # It works by looking at the "categories" field in the json, therefore
        # if users' own json also have incontiguous ids, we'll
        # apply this mapping as well but print a warning.
        if not (min(cat_ids) == 1 and max(cat_ids) == len(cat_ids)):
            if "coco" not in dataset_name:
                logger.warning("""
Category ids in annotations are not in [1, #categories]! We'll apply a mapping for you.
""")
        id_map = {v: i for i, v in enumerate(cat_ids)}
        meta.thing_dataset_id_to_contiguous_id = id_map

    # sort indices for reproducible results
    img_ids = sorted(list(coco_api.imgs.keys()))
    # imgs is a list of dicts, each looks something like:
    # {'license': 4,
    #  'url': 'http://farm6.staticflickr.com/5454/9413846304_881d5e5c3b_z.jpg',
    #  'file_name': 'COCO_val2014_000000001268.jpg',
    #  'height': 427,
    #  'width': 640,
    #  'date_captured': '2013-11-17 05:57:24',
    #  'id': 1268}
    imgs = coco_api.loadImgs(img_ids)

    # anns is a list[list[dict]], where each dict is an annotation
    # record for an object. The inner list enumerates the objects in an image
    # and the outer list enumerates over images. Example of anns[0]:
    # [{'segmentation': [[192.81,
    #     247.09,
    #     ...
    #     219.03,
    #     249.06]],
    #   'area': 1035.749,
    #   'iscrowd': 0,
    #   'image_id': 1268,
    #   'bbox': [192.81, 224.8, 74.73, 33.43],
    #   'category_id': 16,
    #   'id': 42986},
    #  ...]
    anns = [coco_api.imgToAnns[img_id] for img_id in img_ids]
    if "minival" not in json_file:
        # The popular valminusminival & minival annotations for COCO2014 contain this bug.
        # However the ratio of buggy annotations there is tiny and does not affect accuracy.
        # Therefore wce explicitly white-list them.
        ann_ids = [
            ann["id"] for anns_per_image in anns for ann in anns_per_image
        ]
        assert len(set(ann_ids)) == len(
            ann_ids), "Annotation ids in '{}' are not unique!".format(
                json_file)

    imgs_anns = list(zip(imgs, anns))

    logger.info("Loaded {} images in COCO format from {}".format(
        len(imgs_anns), json_file))

    dataset_dicts = []

    ann_keys = ["iscrowd", "bbox", "keypoints", "category_id"
                ] + (extra_annotation_keys or [])

    num_instances_without_valid_segmentation = 0

    for (img_dict, anno_dict_list) in imgs_anns:
        record = {}
        record["file_name"] = os.path.join(image_root, img_dict["file_name"])
        record["height"] = img_dict["height"]
        record["width"] = img_dict["width"]
        image_id = record["image_id"] = img_dict["id"]

        objs = []
        for anno in anno_dict_list:
            # Check that the image_id in this annotation is the same as
            # the image_id we're looking at.
            # This fails only when the data parsing logic or the annotation file is buggy.

            # The original COCO valminusminival2014 & minival2014 annotation files
            # actually contains bugs that, together with certain ways of using COCO API,
            # can trigger this assertion.
            assert anno["image_id"] == image_id

            assert anno.get("ignore", 0) == 0

            obj = {key: anno[key] for key in ann_keys if key in anno}

            segm = anno.get("segmentation", None)
            if segm:  # either list[list[float]] or dict(RLE)
                if not isinstance(segm, dict):
                    # filter out invalid polygons (< 3 points)
                    segm = [
                        poly for poly in segm
                        if len(poly) % 2 == 0 and len(poly) >= 6
                    ]
                    if len(segm) == 0:
                        num_instances_without_valid_segmentation += 1
                        continue  # ignore this instance
                obj["segmentation"] = segm

            keypts = anno.get("keypoints", None)
            if keypts:  # list[int]
                for idx, v in enumerate(keypts):
                    if idx % 3 != 2:
                        # COCO's segmentation coordinates are floating points in [0, H or W],
                        # but keypoint coordinates are integers in [0, H-1 or W-1]
                        # Therefore we assume the coordinates are "pixel indices" and
                        # add 0.5 to convert to floating point coordinates.
                        keypts[idx] = v + 0.5
                obj["keypoints"] = keypts

            obj["bbox_mode"] = BoxMode.XYWH_ABS
            if id_map:
                obj["category_id"] = id_map[obj["category_id"]]
            objs.append(obj)
        record["annotations"] = objs
        dataset_dicts.append(record)

    if num_instances_without_valid_segmentation > 0:
        logger.warn(
            "Filtered out {} instances without valid segmentation. "
            "There might be issues in your dataset generation process.".format(
                num_instances_without_valid_segmentation))
    return dataset_dicts
Esempio n. 29
0
def load_sem_seg(gt_root, image_root, gt_ext="png", image_ext="jpg"):
    """
    Load semantic segmentation datasets. All files under "gt_root" with "gt_ext" extension are
    treated as ground truth annotations and all files under "image_root" with "image_ext" extension
    as input images. Ground truth and input images are matched using file paths relative to
    "gt_root" and "image_root" respectively without taking into account file extensions.
    This works for COCO as well as some other datasets.

    Args:
        gt_root (str): full path to ground truth semantic segmentation files. Semantic segmentation
            annotations are stored as images with integer values in pixels that represent
            corresponding semantic labels.
        image_root (str): the directory where the input images are.
        gt_ext (str): file extension for ground truth annotations.
        image_ext (str): file extension for input images.

    Returns:
        list[dict]:
            a list of dicts in dl_lib standard format without instance-level
            annotation.

    Notes:
        1. This function does not read the image and ground truth files.
           The results do not have the "image" and "sem_seg" fields.
    """

    # We match input images with ground truth based on their relative filepaths (without file
    # extensions) starting from 'image_root' and 'gt_root' respectively.
    def file2id(folder_path, file_path):
        # extract relative path starting from `folder_path`
        image_id = os.path.normpath(
            os.path.relpath(file_path, start=folder_path))
        # remove file extension
        image_id = os.path.splitext(image_id)[0]
        return image_id

    input_files = sorted(
        (os.path.join(image_root, f)
         for f in PathManager.ls(image_root) if f.endswith(image_ext)),
        key=lambda file_path: file2id(image_root, file_path),
    )
    gt_files = sorted(
        (os.path.join(gt_root, f)
         for f in PathManager.ls(gt_root) if f.endswith(gt_ext)),
        key=lambda file_path: file2id(gt_root, file_path),
    )

    assert len(gt_files) > 0, "No annotations found in {}.".format(gt_root)

    # Use the intersection, so that val2017_100 annotations can run smoothly with val2017 images
    if len(input_files) != len(gt_files):
        logger.warn(
            "Directory {} and {} has {} and {} files, respectively.".format(
                image_root, gt_root, len(input_files), len(gt_files)))
        input_basenames = [
            os.path.basename(f)[:-len(image_ext)] for f in input_files
        ]
        gt_basenames = [os.path.basename(f)[:-len(gt_ext)] for f in gt_files]
        intersect = list(set(input_basenames) & set(gt_basenames))
        # sort, otherwise each worker may obtain a list[dict] in different order
        intersect = sorted(intersect)
        logger.warn("Will use their intersection of {} files.".format(
            len(intersect)))
        input_files = [
            os.path.join(image_root, f + image_ext) for f in intersect
        ]
        gt_files = [os.path.join(gt_root, f + gt_ext) for f in intersect]

    logger.info("Loaded {} images with semantic segmentation from {}".format(
        len(input_files), image_root))

    dataset_dicts = []
    for (img_path, gt_path) in zip(input_files, gt_files):
        local_path = PathManager.get_local_path(gt_path)
        w, h = imagesize.get(local_path)
        record = {}
        record["file_name"] = img_path
        record["sem_seg_file_name"] = gt_path
        record["height"] = h
        record["width"] = w
        dataset_dicts.append(record)

    return dataset_dicts
Esempio n. 30
0
 def _get_local_path(self, path):
     name = path[len(self.PREFIX):]
     return PathManager.get_local_path(self.S3_DETECTRON2_PREFIX + name)