backward = LSTM(128, activation='relu', recurrent_dropout=0.2, dropout=0.1, return_sequences=True, go_backwards=True)(right_embeddig) concat = concatenate([forward, center_embedding, backward], axis=2) semantic = TimeDistributed(Dense(100, activation='tanh'))(concat) pool_rnn = Lambda(lambda x: backend.max(x, axis=1), output_shape=(100, ))(semantic) output = Dense(6, activation='sigmoid')(pool_rnn) model = Model(inputs=[left_context, center, right_context], outputs=output) roc_auc_callback = RocCallback( [_left_context_train, _X_train, _right_context_train], _y_train, [_left_context_valid, _X_valid, _right_context_valid], _y_valid) early_stopping = EarlyStopping(monitor='val_loss', patience=5) model_save_path = './models/text_cnn_non_static_' + str( indice_fold) + '.h5' model_check_point = ModelCheckpoint(model_save_path, save_best_only=True, save_weights_only=True) tb_callback = TensorBoard('./logs', write_graph=True, write_images=True) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) hist = model.fit( [_left_context_train, _X_train, _right_context_train], _y_train, batch_size=BATCH_SIZE,
EMBEDDING_SIZE, input_length=MAX_LEN, weights=[embedding_matrix], trainable=True)) model.add(Convolution1D(256, 3, padding='same', strides=1)) model.add(Activation('relu')) model.add(MaxPooling1D(pool_size=2)) model.add( GRU(256, dropout=0.2, recurrent_dropout=0.1, return_sequences=True)) model.add(GRU(256, dropout=0.2, recurrent_dropout=0.1)) # model.add(Dense(128,activation='relu')) # model.add(Dropout(0.2)) # model.add(BatchNormalization()) model.add(Dense(6, activation='sigmoid')) roc_auc_callback = RocCallback(_X_train, _y_train, _X_valid, _y_valid) early_stopping = EarlyStopping(monitor='val_loss', patience=5) model_save_path = './models/clstm_non_static_' + str(indice_fold) + '.h5' model_check_point = ModelCheckpoint(model_save_path, save_best_only=True, save_weights_only=True) tb_callback = TensorBoard('./logs', write_graph=True, write_images=True) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) hist = model.fit(_X_train, _y_train, batch_size=BATCH_SIZE, epochs=num_epoch, validation_data=(_X_valid, _y_valid), class_weight=class_weight,
# concatenate merge = concatenate([cnn1, cnn2, cnn3]) merge = Flatten()(merge) merge = Dropout(0.5)(merge) merge = concatenate([merge, _statics_input]) merge = BatchNormalization()(merge) merge = GaussianNoise(0.1)(merge) merge = Dense(512, activation='relu')(merge) # linear layer merge = Dropout(0.4)(merge) merge = BatchNormalization()(merge) out = Dense(6, activation='sigmoid')(merge) model = Model(inputs=[_input, _statics_input], outputs=out) roc_auc_callback = RocCallback([_X_train, _statics_train], _y_train, [_X_valid, _statics_valid], _y_valid) early_stopping = EarlyStopping(monitor='val_loss', patience=5) model_save_path = './models/text_cnn_non_static_' + str( indice_fold) + '.h5' model_check_point = ModelCheckpoint(model_save_path, save_best_only=True, save_weights_only=True) tb_callback = TensorBoard('./logs', write_graph=True, write_images=True) model.compile(loss='binary_crossentropy', optimizer='nadam', metrics=['accuracy']) hist = model.fit([_X_train, _statics_train], _y_train, batch_size=BATCH_SIZE, epochs=num_epoch, validation_data=([_X_valid, _statics_valid], _y_valid),