Esempio n. 1
0
                              ' DMN type is not currently implemented')

if args.babi_task_id is not None:
    config.babi_id = args.babi_task_id

config.strong_supervision = False

config.train_mode = False

print('Testing DMN ' + dmn_type + ' on babi task', config.babi_id)

# create model
with tf.variable_scope('DMN') as scope:
    if dmn_type == "original":
        from dmn_original import DMN
        model = DMN(config)
    elif dmn_type == "plus":
        from dmn_plus import DMN_PLUS
        model = DMN_PLUS(config)

print('==> initializing variables')
init = tf.global_variables_initializer()
saver = tf.train.Saver()

with tf.Session() as session:
    session.run(init)

    print('==> restoring weights')
    saver.restore(session,
                  'weights/task' + str(model.config.babi_id) + '.weights')
    print('==> running DMN')
    config.babi_id = args.babi_task_id

config.babi_id = args.babi_task_id if args.babi_task_id is not None else str(1)
config.l2 = args.l2_loss if args.l2_loss is not None else 0.001
config.strong_supervision = args.strong_supervision if args.strong_supervision is not None else False
num_runs = args.num_runs if args.num_runs is not None else 1

print 'Training DMN ' + dmn_type + ' on babi task', config.babi_id

best_overall_val_loss = float('inf')

# create model
with tf.variable_scope('DMN') as scope:
    if dmn_type == "original":
        from dmn_original import DMN
        model = DMN(config)
    elif dmn_type == "plus":
        from dmn_plus import DMN_PLUS
        model = DMN_PLUS(config)

for run in range(num_runs):

    print 'Starting run', run

    print '==> initializing variables'
    init = tf.initialize_all_variables()
    saver = tf.train.Saver()

    with tf.Session() as session:

        sum_dir = 'summaries/train/' + time.strftime("%Y-%m-%d %H %M")
    raise NotImplementedError(dmn_type + ' DMN type is not currently implemented')

if args.babi_task_id is not None:
    config.babi_id = args.babi_task_id

config.strong_supervision = False

config.train_mode = False

print( 'Testing DMN ' + dmn_type + ' on babi task', config.babi_id)

# create model
with tf.variable_scope('DMN') as scope:
    if dmn_type == "original":
        from dmn_original import DMN
        model = DMN(config)
    elif dmn_type == "plus":
        from dmn_plus import DMN_PLUS
        model = DMN_PLUS(config)

print('==> initializing variables')
init = tf.global_variables_initializer()
saver = tf.train.Saver()

with tf.Session() as session:
    session.run(init)

    print('==> restoring weights')
    saver.restore(session, 'weights/task' + str(model.config.babi_id) + '.weights')

    print('==> running DMN')
    config.babi_id = args.babi_task_id

config.babi_id = args.babi_task_id if args.babi_task_id is not None else str(1)
config.l2 = args.l2_loss if args.l2_loss is not None else 0.001
config.strong_supervision = args.strong_supervision if args.strong_supervision is not None else False
num_runs = args.num_runs if args.num_runs is not None else 1

print('Training DMN ' + dmn_type + ' on babi task', config.babi_id)

best_overall_val_loss = float('inf')

# create model
with tf.variable_scope('DMN') as scope:
    if dmn_type == "original":
        from dmn_original import DMN
        model = DMN(config)
    elif dmn_type == "plus":
        from dmn_plus import DMN_PLUS
        model = DMN_PLUS(config)

for run in range(num_runs):

    print('Starting run', run)

    print('==> initializing variables')
    init = tf.global_variables_initializer()
    saver = tf.train.Saver()

    with tf.Session() as session:

        sum_dir = 'summaries/train/' + time.strftime("%Y-%m-%d %H %M")
Esempio n. 5
0
# for i in range(0,2):
#     inp = input("Input :")
#     inp = u"%s"%inp
#     f.write(inp)
#     f.write("\n")
# inp = input("Q :")
# f.write(inp)
# f.write("\n")
# f.close()
# asd

# create model
with tf.variable_scope('DMN') as scope:
    if dmn_type == "original":
        from dmn_original import DMN
        model = DMN(config)
    elif dmn_type == "plus":
        from dmn_self_plus import DMN_PLUS
        model = DMN_PLUS(config)

print('==> initializing variables')
init = tf.global_variables_initializer()
saver = tf.train.Saver()

with tf.Session() as session:
    session.run(init)
    print('==> restoring weights')
    saver.restore(session, 'weights/task' + str(model.config.babi_id) + '.weights')

    print('==> running DMN')
    # test_loss, test_accuracy = model.run_epoch(session, model.test)