def __init__(self) -> None: self.model: Sequential = Sequential() self.model.add(Conv2D(filters=6, kernel_size=(5, 5), activation="relu")) self.model.add(MaxPool2D(pool_size=(2, 2))) self.model.add( Conv2D(filters=16, kernel_size=(5, 5), activation="relu")) self.model.add(MaxPool2D(pool_size=(2, 2))) self.model.add(Flatten()) self.model.add(FC(units=120, activation="relu")) self.model.add(FC(units=84, activation="relu"))
from dnet import datasets from dnet.archs import LeNet5 from dnet.layers import FC (x_train, y_train), (x_val, y_val) = datasets.tiny_mnist(flatten=False, one_hot_encoding=True) model = LeNet5()() model.add(FC(units=10, activation="softmax")) model.compile(loss="categorical_crossentropy", optimizer="adam", lr=1e-03, bs=512) model.fit(inputs=x_train, targets=y_train, epochs=10, validation_data=(x_val, y_val)) model.plot_losses() model.plot_accuracy()
from dnet import datasets from dnet.layers import Conv2D, MaxPool2D, Flatten, FC from dnet.models import Sequential (x_train, y_train), (x_val, y_val) = datasets.tiny_mnist(flatten=False, one_hot_encoding=True) model = Sequential([ Conv2D(filters=6, kernel_size=(5, 5), activation="relu"), MaxPool2D(pool_size=(2, 2)), Conv2D(filters=16, kernel_size=(5, 5), activation="relu"), MaxPool2D(pool_size=(2, 2)), Flatten(), FC(units=120, activation="relu"), FC(units=84, activation="relu"), FC(units=10, activation="softmax") ]) model.compile(loss="categorical_crossentropy", optimizer="adam", lr=1e-03, bs=512) model.fit(inputs=x_train, targets=y_train, epochs=10, validation_data=(x_val, y_val)) model.plot_losses() model.plot_accuracy()
def __init__(self) -> None: self.model: Sequential = Sequential() self.model.add( Conv2D(filters=64, kernel_size=(3, 3), padding="same", activation="relu")) self.model.add( Conv2D(filters=64, kernel_size=(3, 3), padding="same", activation="relu")) self.model.add(MaxPool2D(pool_size=(2, 2))) self.model.add( Conv2D(filters=128, kernel_size=(3, 3), padding="same", activation="relu")) self.model.add( Conv2D(filters=128, kernel_size=(3, 3), padding="same", activation="relu")) self.model.add(MaxPool2D(pool_size=(2, 2))) self.model.add( Conv2D(filters=256, kernel_size=(3, 3), padding="same", activation="relu")) self.model.add( Conv2D(filters=256, kernel_size=(3, 3), padding="same", activation="relu")) self.model.add( Conv2D(filters=256, kernel_size=(3, 3), padding="same", activation="relu")) self.model.add(MaxPool2D(pool_size=(2, 2))) self.model.add( Conv2D(filters=512, kernel_size=(3, 3), padding="same", activation="relu")) self.model.add( Conv2D(filters=512, kernel_size=(3, 3), padding="same", activation="relu")) self.model.add( Conv2D(filters=512, kernel_size=(3, 3), padding="same", activation="relu")) self.model.add(MaxPool2D(pool_size=(2, 2))) self.model.add( Conv2D(filters=512, kernel_size=(3, 3), padding="same", activation="relu")) self.model.add( Conv2D(filters=512, kernel_size=(3, 3), padding="same", activation="relu")) self.model.add( Conv2D(filters=512, kernel_size=(3, 3), padding="same", activation="relu")) self.model.add(MaxPool2D(pool_size=(2, 2))) self.model.add(Flatten()) self.model.add(FC(units=4096, activation="relu")) self.model.add(FC(units=4096, activation="relu"))
from dnet import datasets from dnet.layers import FC from dnet.models import Sequential (x_train, y_train), (x_val, y_val) = datasets.tiny_mnist(flatten=True, one_hot_encoding=True) model = Sequential() model.add(FC(units=500, activation="relu")) model.add(FC(units=50, activation="relu")) model.add(FC(units=10, activation="softmax")) model.compile(loss="categorical_crossentropy", optimizer="rmsprop", lr=1e-03, bs=512) model.fit(inputs=x_train, targets=y_train, epochs=20, validation_data=(x_val, y_val)) model.plot_losses() model.plot_accuracy()