Esempio n. 1
0
            print('Checkpoint {} saved !'.format(epoch + 1))
            logger.image_summary(
                'train_images',
                [vis_image.cpu().numpy() for vis_image in vis_images],
                step=tot_step_count)


if __name__ == '__main__':

    if net_name == 'unet':
        model = UNet(n_channels=3, n_classes=2)
    else:
        model = HNNNet(pretrained=True, class_number=2)

    if config.D_MULTIPLY:
        dnet = DNet(input_dim=3, output_dim=1, input_size=config.PATCH_SIZE)
    else:
        dnet = DNet(input_dim=4, output_dim=1, input_size=config.PATCH_SIZE)

    g_optimizer = optim.SGD(model.parameters(),
                            lr=config.G_LEARNING_RATE,
                            momentum=0.9,
                            weight_decay=0.0005)
    d_optimizer = optim.SGD(dnet.parameters(),
                            lr=config.D_LEARNING_RATE,
                            momentum=0.9,
                            weight_decay=0.0005)
    resume = config.RESUME_MODEL
    if resume:
        if os.path.isfile(resume):
            print("=> loading checkpoint '{}'".format(resume))
Esempio n. 2
0
                'train_images',
                [vis_image.cpu().numpy() for vis_image in vis_images],
                step=tot_step_count)


if __name__ == '__main__':

    if net_name == 'unet':
        model = UNet(n_channels=3, n_classes=2)
    else:
        model = HNNNet(pretrained=True, class_number=2)

    if config.USE_DNET:
        if config.D_MULTIPLY:
            dnet = DNet(input_dim=3,
                        output_dim=1,
                        input_size=config.PATCH_SIZE)
        else:
            dnet = DNet(input_dim=4,
                        output_dim=1,
                        input_size=config.PATCH_SIZE)
    else:
        dnet = None

    resume = config.RESUME_MODEL
    if resume:
        if os.path.isfile(resume):
            print("=> loading checkpoint '{}'".format(resume))
            checkpoint = torch.load(resume)
            start_epoch = checkpoint['epoch'] + 1
            start_step = checkpoint['step']