class MSDA(object): def __init__( self, numpy_rng, theano_rng=None, n_ins=[784, 784], hidden_layers_sizes=[[500, 500], [500, 500], [500]], n_outs=10, ): # last modal is fusion layers self.n_modals = len(hidden_layers_sizes) self.n_layers = [len(size) for size in hidden_layers_sizes] self.sigmoid_layers = [] self.da_layers = [] for i in range(self.n_modals): self.sigmoid_layers.append([]) self.da_layers.append([]) self.params = [] if not theano_rng: theano_rng = RandomStreams(numpy_rng.randint(2 ** 30)) # allocate symbolic variables for the data self.x = [T.matrix('x' + str(i)) for i in range(self.n_modals - 1)] self.y = T.ivector('y') for k in range(self.n_modals): for i in range(self.n_layers[k]): # construct the sigmoidal layer # the input to this layer is either the activation of the hidden # layer below or the input of the SdA if you are on the first layer if i == 0: if k != self.n_modals - 1: # individual modal input_size = n_ins[k] layer_input = self.x[k] else: # fusion layers input_size = numpy.sum([hidden_layers_sizes[m][-1] for m in range(self.n_modals - 1)]) layer_input = T.concatenate( [self.sigmoid_layers[m][-1].output for m in range(self.n_modals - 1)], axis=1) else: input_size = hidden_layers_sizes[k][i - 1] layer_input = self.sigmoid_layers[k][-1].output sigmoid_layer = HiddenLayer(rng=numpy_rng, input=layer_input, n_in=input_size, n_out=hidden_layers_sizes[k][i], activation=T.nnet.sigmoid) # add the layer to our list of layers self.sigmoid_layers[k].append(sigmoid_layer) self.params.extend(sigmoid_layer.params) # Construct a denoising autoencoder that shared weights with this layer da_layer = DA(numpy_rng=numpy_rng, theano_rng=theano_rng, input=layer_input, n_visible=input_size, n_hidden=hidden_layers_sizes[k][i], W=sigmoid_layer.W, bhid=sigmoid_layer.b) self.da_layers[k].append(da_layer) # Construct logistic layer self.logLayer = LogisticRegression( input=self.sigmoid_layers[-1][-1].output, n_in=hidden_layers_sizes[-1][-1], n_out=n_outs ) self.params.extend(self.logLayer.params) # construct a function that implements one step of finetunining # compute the cost for second phase of training, # defined as the negative log likelihood self.finetune_cost = self.logLayer.negative_log_likelihood(self.y) # predict y self.y_pred = self.logLayer.y_pred def pretraining_functions(self, datasets_modals, batch_size): # index to a [mini]batch index = T.lscalar('index') # index to a minibatch corruption_level = T.scalar('corruption') # % of corruption to use learning_rate = T.scalar('lr') # learning rate to use # begining of a batch, given `index` batch_begin = index * batch_size # ending of a batch given `index` batch_end = batch_begin + batch_size pretrain_fns = [] givens = [(self.x[k], datasets_modals[k][0][0][batch_begin: batch_end]) for k in range(self.n_modals - 1)] for da_layers_modal in self.da_layers: for da in da_layers_modal: # get the cost and the updates list cost, updates = da.get_cost_updates(corruption_level, learning_rate) # compile the theano function fn = theano.function( inputs=[ index, theano.Param(corruption_level, default=0.2), theano.Param(learning_rate, default=0.1) ], outputs=cost, updates=updates, givens=givens, on_unused_input='warn' ) # append `fn` to the list of functions pretrain_fns.append(fn) return pretrain_fns def build_finetune_functions(self, datasets_modals, batch_size, learning_rate): index = T.lscalar('index') # index to a [mini]batch batch_begin = index * batch_size batch_end = batch_begin + batch_size # compute the gradients with respect to the model parameters gparams = T.grad(self.finetune_cost, self.params) # compute list of fine-tuning updates updates = [ (param, param - gparam * learning_rate) for param, gparam in zip(self.params, gparams) ] train_givens = [(self.x[k], datasets_modals[k][0][0][batch_begin: batch_end]) for k in range(self.n_modals - 1)] train_givens.append((self.y, datasets_modals[0][0][1][batch_begin: batch_end])) train_fn = theano.function( inputs=[index], outputs=self.finetune_cost, updates=updates, givens=train_givens, name='train' ) valid_givens = [(self.x[k], datasets_modals[k][1][0][batch_begin: batch_end]) for k in range(self.n_modals - 1)] valid_score_i = theano.function( [index], self.y_pred, givens=valid_givens, name='valid' ) return train_fn, valid_score_i def build_seq_output_functions(self, datasets_modals): train_givens = [(self.x[k], datasets_modals[k][0][0]) for k in range(self.n_modals - 1)] train_fn = theano.function( [], [self.sigmoid_layers[-1][-1].output, self.y_pred], givens=train_givens, ) valid_givens = [(self.x[k], datasets_modals[k][1][0]) for k in range(self.n_modals - 1)] valid_fn = theano.function( [], [self.sigmoid_layers[-1][-1].output, self.y_pred], givens=valid_givens, ) return train_fn, valid_fn
def __init__( self, numpy_rng, theano_rng=None, n_ins=[784, 784], hidden_layers_sizes=[[500, 500], [500, 500], [500]], n_outs=10, ): # last modal is fusion layers self.n_modals = len(hidden_layers_sizes) self.n_layers = [len(size) for size in hidden_layers_sizes] self.sigmoid_layers = [] self.da_layers = [] for i in range(self.n_modals): self.sigmoid_layers.append([]) self.da_layers.append([]) self.params = [] if not theano_rng: theano_rng = RandomStreams(numpy_rng.randint(2 ** 30)) # allocate symbolic variables for the data self.x = [T.matrix('x' + str(i)) for i in range(self.n_modals - 1)] self.y = T.ivector('y') for k in range(self.n_modals): for i in range(self.n_layers[k]): # construct the sigmoidal layer # the input to this layer is either the activation of the hidden # layer below or the input of the SdA if you are on the first layer if i == 0: if k != self.n_modals - 1: # individual modal input_size = n_ins[k] layer_input = self.x[k] else: # fusion layers input_size = numpy.sum([hidden_layers_sizes[m][-1] for m in range(self.n_modals - 1)]) layer_input = T.concatenate( [self.sigmoid_layers[m][-1].output for m in range(self.n_modals - 1)], axis=1) else: input_size = hidden_layers_sizes[k][i - 1] layer_input = self.sigmoid_layers[k][-1].output sigmoid_layer = HiddenLayer(rng=numpy_rng, input=layer_input, n_in=input_size, n_out=hidden_layers_sizes[k][i], activation=T.nnet.sigmoid) # add the layer to our list of layers self.sigmoid_layers[k].append(sigmoid_layer) self.params.extend(sigmoid_layer.params) # Construct a denoising autoencoder that shared weights with this layer da_layer = DA(numpy_rng=numpy_rng, theano_rng=theano_rng, input=layer_input, n_visible=input_size, n_hidden=hidden_layers_sizes[k][i], W=sigmoid_layer.W, bhid=sigmoid_layer.b) self.da_layers[k].append(da_layer) # Construct logistic layer self.logLayer = LogisticRegression( input=self.sigmoid_layers[-1][-1].output, n_in=hidden_layers_sizes[-1][-1], n_out=n_outs ) self.params.extend(self.logLayer.params) # construct a function that implements one step of finetunining # compute the cost for second phase of training, # defined as the negative log likelihood self.finetune_cost = self.logLayer.negative_log_likelihood(self.y) # predict y self.y_pred = self.logLayer.y_pred
class DBN(object): """Deep Belief Network A deep belief network is obtained by stacking several RBMs on top of each other. The hidden layer of the RBM at layer `i` becomes the input of the RBM at layer `i+1`. The first layer RBM gets as input the input of the network, and the hidden layer of the last RBM represents the output. When used for classification, the DBN is treated as a MLP, by adding a logistic regression layer on top. """ def __init__(self, numpy_rng, theano_rng=None, n_ins=784, hidden_layers_sizes=[500, 500], n_outs=10): """This class is made to support a variable number of layers. :type numpy_rng: numpy.random.RandomState :param numpy_rng: numpy random number generator used to draw initial weights :type theano_rng: theano.tensor.shared_randomstreams.RandomStreams :param theano_rng: Theano random generator; if None is given one is generated based on a seed drawn from `rng` :type n_ins: int :param n_ins: dimension of the input to the DBN :type hidden_layers_sizes: list of ints :param hidden_layers_sizes: intermediate layers size, must contain at least one value :type n_outs: int :param n_outs: dimension of the output of the network """ self.sigmoid_layers = [] self.rbm_layers = [] self.params = [] self.n_layers = len(hidden_layers_sizes) assert self.n_layers > 0 if not theano_rng: theano_rng = RandomStreams(numpy_rng.randint(2**30)) # allocate symbolic variables for the data self.x = T.matrix('x') # the data is presented as rasterized images self.y = T.ivector('y') # the labels are presented as 1D vector # of [int] labels # end-snippet-1 # The DBN is an MLP, for which all weights of intermediate # layers are shared with a different RBM. We will first # construct the DBN as a deep multilayer perceptron, and when # constructing each sigmoidal layer we also construct an RBM # that shares weights with that layer. During pretraining we # will train these RBMs (which will lead to chainging the # weights of the MLP as well) During finetuning we will finish # training the DBN by doing stochastic gradient descent on the # MLP. for i in range(self.n_layers): # construct the sigmoidal layer # the size of the input is either the number of hidden # units of the layer below or the input size if we are on # the first layer if i == 0: input_size = n_ins else: input_size = hidden_layers_sizes[i - 1] # the input to this layer is either the activation of the # hidden layer below or the input of the DBN if you are on # the first layer if i == 0: layer_input = self.x else: layer_input = self.sigmoid_layers[-1].output sigmoid_layer = HiddenLayer(rng=numpy_rng, input=layer_input, n_in=input_size, n_out=hidden_layers_sizes[i], activation=T.nnet.sigmoid) # add the layer to our list of layers self.sigmoid_layers.append(sigmoid_layer) # its arguably a philosophical question... but we are # going to only declare that the parameters of the # sigmoid_layers are parameters of the DBN. The visible # biases in the RBM are parameters of those RBMs, but not # of the DBN. self.params.extend(sigmoid_layer.params) # Construct an RBM that shared weights with this layer rbm_layer = RBM(numpy_rng=numpy_rng, theano_rng=theano_rng, input=layer_input, n_visible=input_size, n_hidden=hidden_layers_sizes[i], W=sigmoid_layer.W, hbias=sigmoid_layer.b) self.rbm_layers.append(rbm_layer) # We now need to add a logistic layer on top of the MLP self.logLayer = LogisticRegression( input=self.sigmoid_layers[-1].output, n_in=hidden_layers_sizes[-1], n_out=n_outs) self.params.extend(self.logLayer.params) # compute the cost for second phase of training, defined as the # negative log likelihood of the logistic regression (output) layer self.finetune_cost = self.logLayer.negative_log_likelihood(self.y) # predict y self.y_pred = self.logLayer.y_pred def pretraining_functions(self, train_set_x, batch_size, k): """Generates a list of functions, for performing one step of gradient descent at a given layer. The function will require as input the minibatch index, and to train an RBM you just need to iterate, calling the corresponding function on all minibatch indexes. :type train_set_x: theano.tensor.TensorType :param train_set_x: Shared var. that contains all datapoints used for training the RBM :type batch_size: int :param batch_size: size of a [mini]batch :param k: number of Gibbs steps to do in CD-k / PCD-k """ # index to a [mini]batch index = T.lscalar('index') # index to a minibatch learning_rate = T.scalar('lr') # learning rate to use # begining of a batch, given `index` batch_begin = index * batch_size # ending of a batch given `index` batch_end = batch_begin + batch_size pretrain_fns = [] for rbm in self.rbm_layers: # get the cost and the updates list # using CD-k here (persisent=None) for training each RBM. # TODO: change cost function to reconstruction error cost, updates = rbm.get_cost_updates(learning_rate, persistent=None, k=k) # compile the theano function fn = theano.function( inputs=[index, theano.Param(learning_rate, default=0.1)], outputs=cost, updates=updates, givens={self.x: train_set_x[batch_begin:batch_end]}) # append `fn` to the list of functions pretrain_fns.append(fn) return pretrain_fns def build_finetune_functions(self, datasets, batch_size, learning_rate): """Generates a function `train` that implements one step of finetuning, a function `validate` that computes the error on a batch from the validation set, and a function `test` that computes the error on a batch from the testing set :type datasets: list of pairs of theano.tensor.TensorType :param datasets: It is a list that contain all the datasets; the has to contain three pairs, `train`, `valid`, `test` in this order, where each pair is formed of two Theano variables, one for the datapoints, the other for the labels :type batch_size: int :param batch_size: size of a minibatch :type learning_rate: float :param learning_rate: learning rate used during finetune stage """ train_set_x, train_set_y = datasets[0] valid_set_x, valid_set_y = datasets[1] index = T.lscalar('index') # index to a [mini]batch # compute the gradients with respect to the model parameters gparams = T.grad(self.finetune_cost, self.params) # compute list of fine-tuning updates updates = [] for param, gparam in zip(self.params, gparams): updates.append((param, param - gparam * learning_rate)) train_fn = theano.function( inputs=[index], outputs=self.finetune_cost, updates=updates, givens={ self.x: train_set_x[index * batch_size:(index + 1) * batch_size], self.y: train_set_y[index * batch_size:(index + 1) * batch_size] }) validate_model = theano.function( inputs=[index], outputs=self.y_pred, givens={ self.x: valid_set_x[index * batch_size:(index + 1) * batch_size] }) return train_fn, validate_model
def __init__(self, numpy_rng, theano_rng=None, n_ins=784, hidden_layers_sizes=[500, 500], n_outs=10): """This class is made to support a variable number of layers. :type numpy_rng: numpy.random.RandomState :param numpy_rng: numpy random number generator used to draw initial weights :type theano_rng: theano.tensor.shared_randomstreams.RandomStreams :param theano_rng: Theano random generator; if None is given one is generated based on a seed drawn from `rng` :type n_ins: int :param n_ins: dimension of the input to the DBN :type hidden_layers_sizes: list of ints :param hidden_layers_sizes: intermediate layers size, must contain at least one value :type n_outs: int :param n_outs: dimension of the output of the network """ self.sigmoid_layers = [] self.rbm_layers = [] self.params = [] self.n_layers = len(hidden_layers_sizes) assert self.n_layers > 0 if not theano_rng: theano_rng = RandomStreams(numpy_rng.randint(2**30)) # allocate symbolic variables for the data self.x = T.matrix('x') # the data is presented as rasterized images self.y = T.ivector('y') # the labels are presented as 1D vector # of [int] labels # end-snippet-1 # The DBN is an MLP, for which all weights of intermediate # layers are shared with a different RBM. We will first # construct the DBN as a deep multilayer perceptron, and when # constructing each sigmoidal layer we also construct an RBM # that shares weights with that layer. During pretraining we # will train these RBMs (which will lead to chainging the # weights of the MLP as well) During finetuning we will finish # training the DBN by doing stochastic gradient descent on the # MLP. for i in range(self.n_layers): # construct the sigmoidal layer # the size of the input is either the number of hidden # units of the layer below or the input size if we are on # the first layer if i == 0: input_size = n_ins else: input_size = hidden_layers_sizes[i - 1] # the input to this layer is either the activation of the # hidden layer below or the input of the DBN if you are on # the first layer if i == 0: layer_input = self.x else: layer_input = self.sigmoid_layers[-1].output sigmoid_layer = HiddenLayer(rng=numpy_rng, input=layer_input, n_in=input_size, n_out=hidden_layers_sizes[i], activation=T.nnet.sigmoid) # add the layer to our list of layers self.sigmoid_layers.append(sigmoid_layer) # its arguably a philosophical question... but we are # going to only declare that the parameters of the # sigmoid_layers are parameters of the DBN. The visible # biases in the RBM are parameters of those RBMs, but not # of the DBN. self.params.extend(sigmoid_layer.params) # Construct an RBM that shared weights with this layer rbm_layer = RBM(numpy_rng=numpy_rng, theano_rng=theano_rng, input=layer_input, n_visible=input_size, n_hidden=hidden_layers_sizes[i], W=sigmoid_layer.W, hbias=sigmoid_layer.b) self.rbm_layers.append(rbm_layer) # We now need to add a logistic layer on top of the MLP self.logLayer = LogisticRegression( input=self.sigmoid_layers[-1].output, n_in=hidden_layers_sizes[-1], n_out=n_outs) self.params.extend(self.logLayer.params) # compute the cost for second phase of training, defined as the # negative log likelihood of the logistic regression (output) layer self.finetune_cost = self.logLayer.negative_log_likelihood(self.y) # predict y self.y_pred = self.logLayer.y_pred
def __init__(self, numpy_rng, theano_rng=None, n_ins=784, hidden_layers_sizes=[500, 500], n_outs=10): """This class is made to support a variable number of layers. :type numpy_rng: numpy.random.RandomState :param numpy_rng: numpy random number generator used to draw initial weights :type theano_rng: theano.tensor.shared_randomstreams.RandomStreams :param theano_rng: Theano random generator; if None is given one is generated based on a seed drawn from `rng` :type n_ins: int :param n_ins: dimension of the input to the DBN :type hidden_layers_sizes: list of ints :param hidden_layers_sizes: intermediate layers size, must contain at least one value :type n_outs: int :param n_outs: dimension of the output of the network """ self.sigmoid_layers = [] self.rbm_layers = [] self.params = [] self.n_layers = len(hidden_layers_sizes) assert self.n_layers > 0 if not theano_rng: theano_rng = RandomStreams(numpy_rng.randint(2 ** 30)) # allocate symbolic variables for the data self.x = T.matrix('x') # the data is presented as rasterized images self.y = T.ivector('y') # the labels are presented as 1D vector # of [int] labels # end-snippet-1 # The DBN is an MLP, for which all weights of intermediate # layers are shared with a different RBM. We will first # construct the DBN as a deep multilayer perceptron, and when # constructing each sigmoidal layer we also construct an RBM # that shares weights with that layer. During pretraining we # will train these RBMs (which will lead to chainging the # weights of the MLP as well) During finetuning we will finish # training the DBN by doing stochastic gradient descent on the # MLP. for i in range(self.n_layers): # construct the sigmoidal layer # the size of the input is either the number of hidden # units of the layer below or the input size if we are on # the first layer if i == 0: input_size = n_ins else: input_size = hidden_layers_sizes[i - 1] # the input to this layer is either the activation of the # hidden layer below or the input of the DBN if you are on # the first layer if i == 0: layer_input = self.x else: layer_input = self.sigmoid_layers[-1].output sigmoid_layer = HiddenLayer(rng=numpy_rng, input=layer_input, n_in=input_size, n_out=hidden_layers_sizes[i], activation=T.nnet.sigmoid) # add the layer to our list of layers self.sigmoid_layers.append(sigmoid_layer) # its arguably a philosophical question... but we are # going to only declare that the parameters of the # sigmoid_layers are parameters of the DBN. The visible # biases in the RBM are parameters of those RBMs, but not # of the DBN. self.params.extend(sigmoid_layer.params) # Construct an RBM that shared weights with this layer rbm_layer = RBM(numpy_rng=numpy_rng, theano_rng=theano_rng, input=layer_input, n_visible=input_size, n_hidden=hidden_layers_sizes[i], W=sigmoid_layer.W, hbias=sigmoid_layer.b) self.rbm_layers.append(rbm_layer) # We now need to add a logistic layer on top of the MLP self.logLayer = LogisticRegression( input=self.sigmoid_layers[-1].output, n_in=hidden_layers_sizes[-1], n_out=n_outs) self.params.extend(self.logLayer.params) # compute the cost for second phase of training, defined as the # negative log likelihood of the logistic regression (output) layer self.finetune_cost = self.logLayer.negative_log_likelihood(self.y) # predict y self.y_pred = self.logLayer.y_pred
class DBN(object): """Deep Belief Network A deep belief network is obtained by stacking several RBMs on top of each other. The hidden layer of the RBM at layer `i` becomes the input of the RBM at layer `i+1`. The first layer RBM gets as input the input of the network, and the hidden layer of the last RBM represents the output. When used for classification, the DBN is treated as a MLP, by adding a logistic regression layer on top. """ def __init__(self, numpy_rng, theano_rng=None, n_ins=784, hidden_layers_sizes=[500, 500], n_outs=10): """This class is made to support a variable number of layers. :type numpy_rng: numpy.random.RandomState :param numpy_rng: numpy random number generator used to draw initial weights :type theano_rng: theano.tensor.shared_randomstreams.RandomStreams :param theano_rng: Theano random generator; if None is given one is generated based on a seed drawn from `rng` :type n_ins: int :param n_ins: dimension of the input to the DBN :type hidden_layers_sizes: list of ints :param hidden_layers_sizes: intermediate layers size, must contain at least one value :type n_outs: int :param n_outs: dimension of the output of the network """ self.sigmoid_layers = [] self.rbm_layers = [] self.params = [] self.n_layers = len(hidden_layers_sizes) assert self.n_layers > 0 if not theano_rng: theano_rng = RandomStreams(numpy_rng.randint(2 ** 30)) # allocate symbolic variables for the data self.x = T.matrix('x') # the data is presented as rasterized images self.y = T.ivector('y') # the labels are presented as 1D vector # of [int] labels # end-snippet-1 # The DBN is an MLP, for which all weights of intermediate # layers are shared with a different RBM. We will first # construct the DBN as a deep multilayer perceptron, and when # constructing each sigmoidal layer we also construct an RBM # that shares weights with that layer. During pretraining we # will train these RBMs (which will lead to chainging the # weights of the MLP as well) During finetuning we will finish # training the DBN by doing stochastic gradient descent on the # MLP. for i in range(self.n_layers): # construct the sigmoidal layer # the size of the input is either the number of hidden # units of the layer below or the input size if we are on # the first layer if i == 0: input_size = n_ins else: input_size = hidden_layers_sizes[i - 1] # the input to this layer is either the activation of the # hidden layer below or the input of the DBN if you are on # the first layer if i == 0: layer_input = self.x else: layer_input = self.sigmoid_layers[-1].output sigmoid_layer = HiddenLayer(rng=numpy_rng, input=layer_input, n_in=input_size, n_out=hidden_layers_sizes[i], activation=T.nnet.sigmoid) # add the layer to our list of layers self.sigmoid_layers.append(sigmoid_layer) # its arguably a philosophical question... but we are # going to only declare that the parameters of the # sigmoid_layers are parameters of the DBN. The visible # biases in the RBM are parameters of those RBMs, but not # of the DBN. self.params.extend(sigmoid_layer.params) # Construct an RBM that shared weights with this layer rbm_layer = RBM(numpy_rng=numpy_rng, theano_rng=theano_rng, input=layer_input, n_visible=input_size, n_hidden=hidden_layers_sizes[i], W=sigmoid_layer.W, hbias=sigmoid_layer.b) self.rbm_layers.append(rbm_layer) # We now need to add a logistic layer on top of the MLP self.logLayer = LogisticRegression( input=self.sigmoid_layers[-1].output, n_in=hidden_layers_sizes[-1], n_out=n_outs) self.params.extend(self.logLayer.params) # compute the cost for second phase of training, defined as the # negative log likelihood of the logistic regression (output) layer self.finetune_cost = self.logLayer.negative_log_likelihood(self.y) # predict y self.y_pred = self.logLayer.y_pred def pretraining_functions(self, train_set_x, batch_size, k): """Generates a list of functions, for performing one step of gradient descent at a given layer. The function will require as input the minibatch index, and to train an RBM you just need to iterate, calling the corresponding function on all minibatch indexes. :type train_set_x: theano.tensor.TensorType :param train_set_x: Shared var. that contains all datapoints used for training the RBM :type batch_size: int :param batch_size: size of a [mini]batch :param k: number of Gibbs steps to do in CD-k / PCD-k """ # index to a [mini]batch index = T.lscalar('index') # index to a minibatch learning_rate = T.scalar('lr') # learning rate to use # begining of a batch, given `index` batch_begin = index * batch_size # ending of a batch given `index` batch_end = batch_begin + batch_size pretrain_fns = [] for rbm in self.rbm_layers: # get the cost and the updates list # using CD-k here (persisent=None) for training each RBM. # TODO: change cost function to reconstruction error cost, updates = rbm.get_cost_updates(learning_rate, persistent=None, k=k) # compile the theano function fn = theano.function( inputs=[index, theano.Param(learning_rate, default=0.1)], outputs=cost, updates=updates, givens={ self.x: train_set_x[batch_begin:batch_end] } ) # append `fn` to the list of functions pretrain_fns.append(fn) return pretrain_fns def build_finetune_functions(self, datasets, batch_size, learning_rate): """Generates a function `train` that implements one step of finetuning, a function `validate` that computes the error on a batch from the validation set, and a function `test` that computes the error on a batch from the testing set :type datasets: list of pairs of theano.tensor.TensorType :param datasets: It is a list that contain all the datasets; the has to contain three pairs, `train`, `valid`, `test` in this order, where each pair is formed of two Theano variables, one for the datapoints, the other for the labels :type batch_size: int :param batch_size: size of a minibatch :type learning_rate: float :param learning_rate: learning rate used during finetune stage """ train_set_x, train_set_y = datasets[0] valid_set_x, valid_set_y = datasets[1] index = T.lscalar('index') # index to a [mini]batch # compute the gradients with respect to the model parameters gparams = T.grad(self.finetune_cost, self.params) # compute list of fine-tuning updates updates = [] for param, gparam in zip(self.params, gparams): updates.append((param, param - gparam * learning_rate)) train_fn = theano.function( inputs=[index], outputs=self.finetune_cost, updates=updates, givens={ self.x: train_set_x[index * batch_size: (index + 1) * batch_size], self.y: train_set_y[index * batch_size: (index + 1) * batch_size] } ) validate_model = theano.function( inputs=[index], outputs=self.y_pred, givens={ self.x: valid_set_x[index * batch_size: (index + 1) * batch_size] } ) return train_fn, validate_model
def __init__( self, numpy_rng, theano_rng=None, n_ins=784, hidden_layers_sizes=[500, 500], n_outs=10, ): """ This class is made to support a variable number of layers. :type numpy_rng: numpy.random.RandomState :param numpy_rng: numpy random number generator used to draw initial weights :type theano_rng: theano.tensor.shared_randomstreams.RandomStreams :param theano_rng: Theano random generator; if None is given one is generated based on a seed drawn from `rng` :type n_ins: int :param n_ins: dimension of the input to the sdA :type hidden_layers_sizes: list of ints :param hidden_layers_sizes: intermediate layers size, must contain at least one value :type n_outs: int :param n_outs: dimension of the output of the network """ self.sigmoid_layers = [] self.dA_layers = [] self.params = [] self.n_layers = len(hidden_layers_sizes) assert self.n_layers > 0 if not theano_rng: theano_rng = RandomStreams(numpy_rng.randint(2**30)) # allocate symbolic variables for the data self.x = T.matrix('x') # the data is presented as rasterized images self.y = T.ivector( 'y') # the labels are presented as 1D vector of [int] labels # The SdA is an MLP, for which all weights of intermediate layers # are shared with a different denoising autoencoders # We will first construct the SdA as a deep multilayer perceptron, # and when constructing each sigmoidal layer we also construct a # denoising autoencoder that shares weights with that layer # During pretraining we will train these autoencoders (which will # lead to chainging the weights of the MLP as well) # During finetunining we will finish training the SdA by doing # stochastich gradient descent on the MLP # start-snippet-2 for i in range(self.n_layers): # construct the sigmoidal layer # the size of the input is either the number of hidden units of # the layer below or the input size if we are on the first layer if i == 0: input_size = n_ins else: input_size = hidden_layers_sizes[i - 1] # the input to this layer is either the activation of the hidden # layer below or the input of the SdA if you are on the first # layer if i == 0: layer_input = self.x else: layer_input = self.sigmoid_layers[-1].output sigmoid_layer = HiddenLayer(rng=numpy_rng, input=layer_input, n_in=input_size, n_out=hidden_layers_sizes[i], activation=T.nnet.sigmoid) # add the layer to our list of layers self.sigmoid_layers.append(sigmoid_layer) # its arguably a philosophical question... # but we are going to only declare that the parameters of the # sigmoid_layers are parameters of the StackedDAA # the visible biases in the dA are parameters of those # dA, but not the SdA self.params.extend(sigmoid_layer.params) # Construct a denoising autoencoder that shared weights with this # layer dA_layer = DA(numpy_rng=numpy_rng, theano_rng=theano_rng, input=layer_input, n_visible=input_size, n_hidden=hidden_layers_sizes[i], W=sigmoid_layer.W, bhid=sigmoid_layer.b) self.dA_layers.append(dA_layer) # end-snippet-2 # We now need to add a logistic layer on top of the MLP self.logLayer = LogisticRegression( input=self.sigmoid_layers[-1].output, n_in=hidden_layers_sizes[-1], n_out=n_outs) self.params.extend(self.logLayer.params) # construct a function that implements one step of finetunining # compute the cost for second phase of training, # defined as the negative log likelihood self.finetune_cost = self.logLayer.negative_log_likelihood(self.y) # compute the gradients with respect to the model parameters # symbolic variable that points to the number of errors made on the # minibatch given by self.x and self.y # predict y self.y_pred = self.logLayer.y_pred
class SDA(object): """Stacked denoising auto-encoder class (SdA) A stacked denoising autoencoder model is obtained by stacking several dAs. The hidden layer of the dA at layer `i` becomes the input of the dA at layer `i+1`. The first layer dA gets as input the input of the SdA, and the hidden layer of the last dA represents the output. Note that after pretraining, the SdA is dealt with as a normal MLP, the dAs are only used to initialize the weights. """ def __init__( self, numpy_rng, theano_rng=None, n_ins=784, hidden_layers_sizes=[500, 500], n_outs=10, ): """ This class is made to support a variable number of layers. :type numpy_rng: numpy.random.RandomState :param numpy_rng: numpy random number generator used to draw initial weights :type theano_rng: theano.tensor.shared_randomstreams.RandomStreams :param theano_rng: Theano random generator; if None is given one is generated based on a seed drawn from `rng` :type n_ins: int :param n_ins: dimension of the input to the sdA :type hidden_layers_sizes: list of ints :param hidden_layers_sizes: intermediate layers size, must contain at least one value :type n_outs: int :param n_outs: dimension of the output of the network """ self.sigmoid_layers = [] self.dA_layers = [] self.params = [] self.n_layers = len(hidden_layers_sizes) assert self.n_layers > 0 if not theano_rng: theano_rng = RandomStreams(numpy_rng.randint(2**30)) # allocate symbolic variables for the data self.x = T.matrix('x') # the data is presented as rasterized images self.y = T.ivector( 'y') # the labels are presented as 1D vector of [int] labels # The SdA is an MLP, for which all weights of intermediate layers # are shared with a different denoising autoencoders # We will first construct the SdA as a deep multilayer perceptron, # and when constructing each sigmoidal layer we also construct a # denoising autoencoder that shares weights with that layer # During pretraining we will train these autoencoders (which will # lead to chainging the weights of the MLP as well) # During finetunining we will finish training the SdA by doing # stochastich gradient descent on the MLP # start-snippet-2 for i in range(self.n_layers): # construct the sigmoidal layer # the size of the input is either the number of hidden units of # the layer below or the input size if we are on the first layer if i == 0: input_size = n_ins else: input_size = hidden_layers_sizes[i - 1] # the input to this layer is either the activation of the hidden # layer below or the input of the SdA if you are on the first # layer if i == 0: layer_input = self.x else: layer_input = self.sigmoid_layers[-1].output sigmoid_layer = HiddenLayer(rng=numpy_rng, input=layer_input, n_in=input_size, n_out=hidden_layers_sizes[i], activation=T.nnet.sigmoid) # add the layer to our list of layers self.sigmoid_layers.append(sigmoid_layer) # its arguably a philosophical question... # but we are going to only declare that the parameters of the # sigmoid_layers are parameters of the StackedDAA # the visible biases in the dA are parameters of those # dA, but not the SdA self.params.extend(sigmoid_layer.params) # Construct a denoising autoencoder that shared weights with this # layer dA_layer = DA(numpy_rng=numpy_rng, theano_rng=theano_rng, input=layer_input, n_visible=input_size, n_hidden=hidden_layers_sizes[i], W=sigmoid_layer.W, bhid=sigmoid_layer.b) self.dA_layers.append(dA_layer) # end-snippet-2 # We now need to add a logistic layer on top of the MLP self.logLayer = LogisticRegression( input=self.sigmoid_layers[-1].output, n_in=hidden_layers_sizes[-1], n_out=n_outs) self.params.extend(self.logLayer.params) # construct a function that implements one step of finetunining # compute the cost for second phase of training, # defined as the negative log likelihood self.finetune_cost = self.logLayer.negative_log_likelihood(self.y) # compute the gradients with respect to the model parameters # symbolic variable that points to the number of errors made on the # minibatch given by self.x and self.y # predict y self.y_pred = self.logLayer.y_pred def pretraining_functions(self, train_set_x, batch_size): """ Generates a list of functions, each of them implementing one step in trainnig the dA corresponding to the layer with same index. The function will require as input the minibatch index, and to train a dA you just need to iterate, calling the corresponding function on all minibatch indexes. :type train_set_x: theano.tensor.TensorType :param train_set_x: Shared variable that contains all datapoints used for training the dA :type batch_size: int :param batch_size: size of a [mini]batch """ # index to a [mini]batch index = T.lscalar('index') # index to a minibatch corruption_level = T.scalar('corruption') # % of corruption to use learning_rate = T.scalar('lr') # learning rate to use # begining of a batch, given `index` batch_begin = index * batch_size # ending of a batch given `index` batch_end = batch_begin + batch_size pretrain_fns = [] for da in self.dA_layers: # get the cost and the updates list cost, updates = da.get_cost_updates(corruption_level, learning_rate) # compile the theano function fn = theano.function( inputs=[ index, theano.Param(corruption_level, default=0.2), theano.Param(learning_rate, default=0.1) ], outputs=cost, updates=updates, givens={self.x: train_set_x[batch_begin:batch_end]}) # append `fn` to the list of functions pretrain_fns.append(fn) return pretrain_fns def build_finetune_functions(self, datasets, batch_size, learning_rate): """Generates a function `train` that implements one step of finetuning, a function `validate` that computes the error on a batch from the validation set, and a function `test` that computes the error on a batch from the testing set :type datasets: list of pairs of theano.tensor.TensorType :param datasets: It is a list that contain all the datasets; the has to contain three pairs, `train`, `valid`, `test` in this order, where each pair is formed of two Theano variables, one for the datapoints, the other for the labels :type batch_size: int :param batch_size: size of a minibatch :type learning_rate: float :param learning_rate: learning rate used during finetune stage """ (train_set_x, train_set_y) = datasets[0] (valid_set_x, valid_set_y) = datasets[1] index = T.lscalar('index') # index to a [mini]batch # compute the gradients with respect to the model parameters gparams = T.grad(self.finetune_cost, self.params) # compute list of fine-tuning updates updates = [(param, param - gparam * learning_rate) for param, gparam in zip(self.params, gparams)] train_fn = theano.function( inputs=[index], outputs=self.finetune_cost, updates=updates, givens={ self.x: train_set_x[index * batch_size:(index + 1) * batch_size], self.y: train_set_y[index * batch_size:(index + 1) * batch_size] }, name='train') valid_score_i = theano.function( [index], self.y_pred, givens={ self.x: valid_set_x[index * batch_size:(index + 1) * batch_size], }, name='valid') return train_fn, valid_score_i
def __init__(self, rng, input, n_in, n_hidden, n_out): """Initialize the parameters for the multilayer perceptron :type rng: numpy.random.RandomState :param rng: a random number generator used to initialize weights :type input: theano.tensor.TensorType :param input: symbolic variable that describes the input of the architecture (one minibatch) :type n_in: int :param n_in: number of input units, the dimension of the space in which the datapoints lie :type n_hidden: int :param n_hidden: number of hidden units :type n_out: int :param n_out: number of output units, the dimension of the space in which the labels lie """ # Since we are dealing with a one hidden layer MLP, this will translate # into a HiddenLayer with a tanh activation function connected to the # LogisticRegression layer; the activation function can be replaced by # sigmoid or any other nonlinear function self.hiddenLayer = HiddenLayer( rng=rng, input=input, n_in=n_in, n_out=n_hidden, activation=T.tanh ) # The logistic regression layer gets as input the hidden units # of the hidden layer self.logRegressionLayer = LogisticRegression( input=self.hiddenLayer.output, n_in=n_hidden, n_out=n_out ) # end-snippet-2 start-snippet-3 # L1 norm ; one regularization option is to enforce L1 norm to # be small self.L1 = ( abs(self.hiddenLayer.W).sum() + abs(self.logRegressionLayer.W).sum() ) # square of L2 norm ; one regularization option is to enforce # square of L2 norm to be small self.L2_sqr = ( (self.hiddenLayer.W ** 2).sum() + (self.logRegressionLayer.W ** 2).sum() ) # negative log likelihood of the MLP is given by the negative # log likelihood of the output of the model, computed in the # logistic regression layer self.negative_log_likelihood = ( self.logRegressionLayer.negative_log_likelihood ) self.y_pred = self.logRegressionLayer.y_pred # the parameters of the model are the parameters of the two layer it is # made out of self.params = self.hiddenLayer.params + self.logRegressionLayer.params