from mnist_dnn_data import load_data from dnn import DNN (train_x, train_y), (test_x, test_y) = load_data() num_input = train_x.shape[1] num_hiddens = [100, 50] num_output = train_y.shape[1] model = DNN(num_input, num_hiddens, num_output) history = model.fit(train_x, train_y, epochs=5, batch_size=100, validation_split=0.2) performance_test = model.evaluate(test_x, test_y, batch_size=100) print('Test Loss and Accuracy ->', performance_test)
from keras.datasets import mnist from keras.utils import np_utils, to_categorical (x_train, y_train), (x_test, y_test) = mnist.load_data() mnist_original_size = 28 x_train = x_train.reshape(x_train.shape[0], mnist_original_size, mnist_original_size, 1) x_test = x_test.reshape(x_test.shape[0], mnist_original_size, mnist_original_size, 1) y_train = to_categorical(y_train, 10) y_test = to_categorical(y_test, 10) model1 = DNN(width=x_train.shape[1], height=x_train.shape[2], depth=x_train.shape[3], classes=10) model1.compile(loss="categorical_crossentropy", optimizer='adadelta', metrics=["accuracy"]) model1.fit(x_train, y_train, epochs=1, verbose=1) loss, accuracy = model1.evaluate(x_test, y_test, verbose=1) print('\nloss: {:.2f}%, accuracy: {:.2f}%'.format(loss*100, accuracy*100)) m1 = model1.predict_proba(x_test) model2 = DNN(width=x_train.shape[1], height=x_train.shape[2], depth=x_train.shape[3], classes=10) model2.compile(loss="categorical_crossentropy", optimizer='adadelta', metrics=["accuracy"]) model2.fit(x_train, y_train, nb_epoch=1, verbose=1) loss, accuracy = model2.evaluate(x_test, y_test, verbose=1) print('\nloss: {:.2f}%, accuracy: {:.2f}%'.format(loss*100, accuracy*100)) m2 = model2.predict_proba(x_test)