def test_comparison(self): lessResult = self.zeros < self.ones dnnc_testing.utils.assert_equal(lessResult, self.ones) greaterResult = self.ones > self.zeros dnnc_testing.utils.assert_equal(greaterResult, self.ones) equalResult = self.ones == dc.ones(2, 3).asTypeInt() dnnc_testing.utils.assert_equal(equalResult, self.ones)
def test_comparison(self): # Less lessResult = self.zeros < self.ones dnnc_testing.utils.assert_equal(lessResult, self.ones) # LessEqual lessEqualResult = self.zeros <= self.zeros dnnc_testing.utils.assert_equal(lessEqualResult, self.ones) # Greater greaterResult = self.ones > self.zeros dnnc_testing.utils.assert_equal(greaterResult, self.ones) # GreaterEqual greaterEqualResult = self.ones >= self.ones dnnc_testing.utils.assert_equal(greaterEqualResult, self.ones) # Equal equalResult = self.ones == dc.ones(2, 3).asTypeInt() dnnc_testing.utils.assert_equal(equalResult, self.ones) # NotEqual notEqualResult = self.ones != self.zeros dnnc_testing.utils.assert_equal(notEqualResult, self.ones)
def setUp(self): self.nullT = dc.array(0) self.zeros = dc.zeros(2, 3).asTypeInt() self.ones = dc.ones(2, 3).asTypeInt() self.f0_4 = dc.arange(5) self.f5_9 = dc.arange(10, 5) self.i0_4 = self.f0_4.asTypeInt() self.i5_9 = self.f5_9.asTypeInt() self.b0_4 = self.f0_4.asTypeBool() self.b5_9 = self.f5_9.asTypeBool()
def test_create(self): # null tensor test a = dc.array(0) assert a.isnull() == True assert a.empty() == True # test assignment is shallow copy of memory b = a assert a.sameas(b) == True assert a.identifier() == b.identifier() # tensor without initiliaztion a = dc.array(2, 3, 4, 5) assert a.length() == 120 # tensor random initiliaztion a = dc.random(2, 3, 4, 5) assert a.length() == 120 # tensor without initiliaztion a = dc.empty(2, 3, 4, 5) assert a.length() == 120 # zero tensor a = dc.zeros(2, 3, 4, 5) assert np.array(list(a.data())).sum().astype(np.int) == 0 # one tensor a = dc.ones(2, 3, 4, 5) assert np.array(list(a.data())).sum().astype(np.int) == 120 # tensor from python list l1D = [1, 3, 5] a = dc.array(l1D).astype('int') np.testing.assert_equal(np.array(l1D), np.array(list(a.data()))) # tensor from python list of lists l2D = [[1, 3, 5], [2, 4, 6]] a = dc.array(l2D).astype('int') assert a.rank() == 2 assert a.shape() == (2, 3) np.testing.assert_equal(np.array(l2D).flatten(), \ np.array(list(a.data()))) # copy tensor b = a.copy() assert a.sameas(b) == False assert a.identifier() != b.identifier() # arange a = dc.arange(10) assert a.length() == 10 # add start and step a = dc.arange(10, 5, 3).astype('int') assert a.data() == (5, 8) # swap start and stop. a = dc.arange(5, 10, 3).astype('int') assert a.data() == (5, 8)
#replace first few values in tensor with new values. data = dc.fvec([1.0, 2.0, 3.0, 4.0]) t3.load(data) #print(t3.to_string()) arr = dc.array([1, 2]) #print(arr) arr2D = dc.array([[1, 2], [10, 20]]) #print(arr2D) arrRand = dc.random(2, 3); #print(arrRand) empty = dc.empty(3, 2); #print(empty) zeros = dc.zeros(2, 2); #print(zeros); ones = dc.ones(2, 2); #print(ones) ranges = dc.arange(15, 3, 2) #print(ranges) def test_multiply(a,b): c = dc.multiply(a, b) #print(c) #3D MatMul Test1 a = dc.make_tensor(2, 2, 2) b = dc.make_tensor(2, 2, 2) adata = dc.fvec([1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0]) bdata = dc.fvec([8.0,7.0,6.0,5.0,4.0,3.0,2.0,1.0])