Esempio n. 1
0
def run_wrapper(submit_config: SubmitConfig) -> None:
    """Wrap the actual run function call for handling logging, exceptions, typing, etc."""
    is_local = submit_config.submit_target == SubmitTarget.LOCAL

    checker = None

    # when running locally, redirect stderr to stdout, log stdout to a file, and force flushing
    if is_local:
        logger = util.Logger(file_name=os.path.join(submit_config.run_dir,
                                                    "log.txt"),
                             file_mode="w",
                             should_flush=True)
    else:  # when running in a cluster, redirect stderr to stdout, and just force flushing (log writing is handled by run.sh)
        logger = util.Logger(file_name=None, should_flush=True)

    import dnnlib
    dnnlib.submit_config = submit_config

    try:
        print("dnnlib: Running {0}() on {1}...".format(
            submit_config.run_func_name, submit_config.host_name))
        start_time = time.time()
        util.call_func_by_name(func_name=submit_config.run_func_name,
                               submit_config=submit_config,
                               **submit_config.run_func_kwargs)
        print("dnnlib: Finished {0}() in {1}.".format(
            submit_config.run_func_name,
            util.format_time(time.time() - start_time)))
    except:
        if is_local:
            raise
        else:
            traceback.print_exc()

            log_src = os.path.join(submit_config.run_dir, "log.txt")
            log_dst = os.path.join(
                get_path_from_template(submit_config.run_dir_root),
                "{0}-error.txt".format(submit_config.run_name))
            shutil.copyfile(log_src, log_dst)
    finally:
        open(os.path.join(submit_config.run_dir, "_finished.txt"), "w").close()

    dnnlib.submit_config = None
    logger.close()

    if checker is not None:
        checker.stop()
Esempio n. 2
0
def train(submit_config: dnnlib.SubmitConfig, iteration_count: int,
          eval_interval: int, minibatch_size: int, learning_rate: float,
          ramp_down_perc: float, noise: dict, validation_config: dict,
          train_tfrecords: str, noise2noise: bool):
    noise_augmenter = dnnlib.util.call_func_by_name(**noise)
    validation_set = ValidationSet(submit_config)
    validation_set.load(**validation_config)

    # Create a run context (hides low level details, exposes simple API to manage the run)
    # noinspection PyTypeChecker
    ctx = dnnlib.RunContext(submit_config, config)

    # Initialize TensorFlow graph and session using good default settings
    tfutil.init_tf(config.tf_config)

    dataset_iter = create_dataset(train_tfrecords, minibatch_size,
                                  noise_augmenter.add_train_noise_tf)

    # Construct the network using the Network helper class and a function defined in config.net_config
    with tf.device("/gpu:0"):
        net = tflib.Network(**config.net_config)

    # Optionally print layer information
    net.print_layers()

    print('Building TensorFlow graph...')
    with tf.name_scope('Inputs'), tf.device("/cpu:0"):
        lrate_in = tf.placeholder(tf.float32, name='lrate_in', shape=[])

        noisy_input, noisy_target, clean_target = dataset_iter.get_next()
        noisy_input_split = tf.split(noisy_input, submit_config.num_gpus)
        noisy_target_split = tf.split(noisy_target, submit_config.num_gpus)
        clean_target_split = tf.split(clean_target, submit_config.num_gpus)

    # Define the loss function using the Optimizer helper class, this will take care of multi GPU
    opt = tflib.Optimizer(learning_rate=lrate_in, **config.optimizer_config)

    for gpu in range(submit_config.num_gpus):
        with tf.device("/gpu:%d" % gpu):
            net_gpu = net if gpu == 0 else net.clone()

            denoised = net_gpu.get_output_for(noisy_input_split[gpu])

            if noise2noise:
                meansq_error = tf.reduce_mean(
                    tf.square(noisy_target_split[gpu] - denoised))
            else:
                meansq_error = tf.reduce_mean(
                    tf.square(clean_target_split[gpu] - denoised))
            # Create an autosummary that will average over all GPUs
            with tf.control_dependencies([autosummary("Loss", meansq_error)]):
                opt.register_gradients(meansq_error, net_gpu.trainables)

    train_step = opt.apply_updates()

    # Create a log file for Tensorboard
    summary_log = tf.summary.FileWriter(submit_config.run_dir)
    summary_log.add_graph(tf.get_default_graph())

    print('Training...')
    time_maintenance = ctx.get_time_since_last_update()
    ctx.update(loss='run %d' % submit_config.run_id,
               cur_epoch=0,
               max_epoch=iteration_count)

    # ***********************************
    # The actual training loop
    for i in range(iteration_count):
        # Whether to stop the training or not should be asked from the context
        if ctx.should_stop():
            break

        # Dump training status
        if i % eval_interval == 0:
            time_train = ctx.get_time_since_last_update()
            time_total = ctx.get_time_since_start()

            # Evaluate 'x' to draw a batch of inputs
            [source_mb, target_mb] = tfutil.run([noisy_input, clean_target])
            denoised = net.run(source_mb)
            save_image(submit_config, denoised[0],
                       "img_{0}_y_pred.png".format(i))
            save_image(submit_config, target_mb[0], "img_{0}_y.png".format(i))
            save_image(submit_config, source_mb[0],
                       "img_{0}_x_aug.png".format(i))

            validation_set.evaluate(net, i,
                                    noise_augmenter.add_validation_noise_np)

            print(
                'iter %-10d time %-12s eta %-12s sec/eval %-7.1f sec/iter %-7.2f maintenance %-6.1f'
                % (autosummary('Timing/iter', i),
                   dnnlib.util.format_time(
                       autosummary('Timing/total_sec', time_total)),
                   dnnlib.util.format_time(
                       autosummary('Timing/total_sec',
                                   (time_train / eval_interval) *
                                   (iteration_count - i))),
                   autosummary('Timing/sec_per_eval', time_train),
                   autosummary('Timing/sec_per_iter',
                               time_train / eval_interval),
                   autosummary('Timing/maintenance_sec', time_maintenance)))

            dnnlib.tflib.autosummary.save_summaries(summary_log, i)
            ctx.update(loss='run %d' % submit_config.run_id,
                       cur_epoch=i,
                       max_epoch=iteration_count)
            time_maintenance = ctx.get_last_update_interval() - time_train

        # Training epoch
        lrate = compute_ramped_down_lrate(i, iteration_count, ramp_down_perc,
                                          learning_rate)
        tfutil.run([train_step], {lrate_in: lrate})

    # End of training
    print("Elapsed time: {0}".format(
        util.format_time(ctx.get_time_since_start())))
    save_snapshot(submit_config, net, 'final')

    # Summary log and context should be closed at the end
    summary_log.close()
    ctx.close()
Esempio n. 3
0
def train(
        submit_config: submit.SubmitConfig,
        iteration_count: int,
        eval_interval: int,
        minibatch_size: int,
        learning_rate: float,
        ramp_down_perc: float,
        noise: dict,
        tf_config: dict,
        net_config: dict,
        optimizer_config: dict,
        validation_config: dict,
        train_tfrecords: str):

    # **dict as argument means: take all additional named arguments to this function
    # and insert them into this parameter as dictionary entries.
    noise_augmenter = noise.func(**noise.func_kwargs)
    validation_set = ValidationSet(submit_config)
    # Load all images for validation as numpy arrays to the images attribute of the validation set.
    validation_set.load(**validation_config)

    # Create a run context (hides low level details, exposes simple API to manage the run)
    ctx = run_context.RunContext(submit_config)

    # Initialize TensorFlow graph and session using good default settings
    tfutil.init_tf(tf_config)

    # Creates the data set from the specified path to a generated tfrecords file containing all training images.
    # Data set will be split into minibatches of the given size and augment the noise with given noise function.
    # Use the dataset_tool_tf to create this tfrecords file.
    dataset_iter = create_dataset(train_tfrecords, minibatch_size, noise_augmenter.add_train_noise_tf)

    # Construct the network using the Network helper class and a function defined in config.net_config
    with tf.device("/gpu:0"):
        net = Network(**net_config)

    # Optionally print layer information
    net.print_layers()

    print('Building TensorFlow graph...')
    with tf.name_scope('Inputs'), tf.device("/cpu:0"):
        # Placeholder for the learning rate. This will get ramped down dynamically.
        lrate_in = tf.placeholder(tf.float32, name='lrate_in', shape=[])

        # Defines the expression(s) that creates the network input.
        noisy_input, noisy_target, clean_target = dataset_iter.get_next()
        noisy_input_split = tf.split(noisy_input, submit_config.num_gpus)
        noisy_target_split = tf.split(noisy_target, submit_config.num_gpus)  # Split over multiple GPUs
        # clean_target_split = tf.split(clean_target, submit_config.num_gpus)

    # --------------------------------------------------------------------------------------------
    # Optimizer initialization and setup:

    # Define the loss function using the Optimizer helper class, this will take care of multi GPU
    opt = Optimizer(learning_rate=lrate_in, **optimizer_config)

    for gpu in range(submit_config.num_gpus):
        with tf.device("/gpu:%d" % gpu):
            # Create a clone for this network for other gpus to work on.
            net_gpu = net if gpu == 0 else net.clone()

            # Create the output expression by giving the input expression into the network.
            denoised = net_gpu.get_output_for(noisy_input_split[gpu])

            # Create the error function as the MSE between the target tensor and the denoised network output.
            meansq_error = tf.reduce_mean(tf.square(noisy_target_split[gpu] - denoised))
            # Create an autosummary that will average over all GPUs
            with tf.control_dependencies([autosummary("Loss", meansq_error)]):
                opt.register_gradients(meansq_error, net_gpu.trainables)

    train_step = opt.apply_updates()  # Defines the update function of the optimizer.

    # Create a log file for Tensorboard
    summary_log = tf._api.v1.summary.FileWriter(submit_config.results_dir)
    summary_log.add_graph(tf.get_default_graph())

    # --------------------------------------------------------------------------------------------
    # Training and some milestone evaluation starts:

    print('Training...')
    time_maintenance = ctx.get_time_since_last_update()
    ctx.update()  # TODO: why parameterized in reference?

    # The actual training loop
    for i in range(iteration_count):
        # Whether to stop the training or not should be asked from the context
        if ctx.should_stop():
            break

        # Dump training status
        if i % eval_interval == 0:

            time_train = ctx.get_time_since_last_update()
            time_total = ctx.get_time_since_start()

            # Evaluate 'x' to draw one minbatch of inputs. Executes the operations defined in the dataset iterator.
            # Evals the noisy input and clean target minibatch Tensor ops to numpy array of the minibatch.
            [source_mb, target_mb] = tfutil.run([noisy_input, clean_target])
            # Runs the noisy images through the network without training it. It is just for observing/evaluating.
            # net.run expects numpy arrays to run through this network.
            denoised = net.run(source_mb)
            # array shape: [minibatch_size, channel_size, height, width]
            util.save_image(submit_config, denoised[0], "img_{0}_y_pred.png".format(i))
            util.save_image(submit_config, target_mb[0], "img_{0}_y.png".format(i))
            util.save_image(submit_config, source_mb[0], "img_{0}_x_aug.png".format(i))

            validation_set.evaluate(net, i, noise_augmenter.add_validation_noise_np)

            print('iter %-10d time %-12s sec/eval %-7.1f sec/iter %-7.2f maintenance %-6.1f' % (
                autosummary('Timing/iter', i),
                dnnlib.util.format_time(autosummary('Timing/total_sec', time_total)),
                autosummary('Timing/sec_per_eval', time_train),
                autosummary('Timing/sec_per_iter', time_train / eval_interval),
                autosummary('Timing/maintenance_sec', time_maintenance)))

            dnnlib.tflib.autosummary.save_summaries(summary_log, i)
            ctx.update()
            time_maintenance = ctx.get_last_update_interval() - time_train

        lrate = compute_ramped_down_lrate(i, iteration_count, ramp_down_perc, learning_rate)
        # Apply the lrate value to the lrate_in placeholder for the optimizer.
        tfutil.run([train_step], {lrate_in: lrate})  # Run the training update through the network in our session.

    print("Elapsed time: {0}".format(dutil.format_time(ctx.get_time_since_start())))
    util.save_snapshot(submit_config, net, 'final')

    # Summary log and context should be closed at the end
    summary_log.close()
    ctx.close()
Esempio n. 4
0
def train(submit_config: dnnlib.SubmitConfig, iteration_count: int,
          eval_interval: int, minibatch_size: int, learning_rate: float,
          ramp_down_perc: float, noise: dict, validation_config: dict,
          train_tfrecords: str, noise2noise: bool):
    noise_augmenter = dnnlib.util.call_func_by_name(**noise)
    validation_set = ValidationSet(submit_config)
    validation_set.load(**validation_config)

    # Create a run context (hides low level details, exposes simple API to manage the run)
    ctx = dnnlib.RunContext(submit_config, config)

    # Initialize TensorFlow graph and session using good default settings
    tfutil.init_tf(config.tf_config)

    dataset_iter = create_dataset(train_tfrecords, minibatch_size,
                                  noise_augmenter.add_train_noise_tf)
    # Construct the network using the Network helper class and a function defined in config.net_config
    with tf.device("/gpu:0"):
        net = tflib.Network(**config.net_config)

    # Optionally print layer information
    net.print_layers()

    print('Building TensorFlow graph...')
    with tf.name_scope('Inputs'), tf.device("/cpu:0"):
        lrate_in = tf.compat.v1.placeholder(tf.float32,
                                            name='lrate_in',
                                            shape=[])

        #print("DEBUG train:", "dataset iter got called")
        noisy_input, noisy_target, clean_target = dataset_iter.get_next()
        noisy_input_split = tf.split(noisy_input, submit_config.num_gpus)
        noisy_target_split = tf.split(noisy_target, submit_config.num_gpus)
        print(len(noisy_input_split), noisy_input_split)
        clean_target_split = tf.split(clean_target, submit_config.num_gpus)
        # Split [?, 3, 256, 256] across num_gpus over axis 0 (i.e. the batch)

    # Define the loss function using the Optimizer helper class, this will take care of multi GPU
    opt = tflib.Optimizer(learning_rate=lrate_in, **config.optimizer_config)
    radii = np.arange(128).reshape(128, 1)  #image size 256, binning = 3
    radial_masks = np.apply_along_axis(radial_mask, 1, radii, 128, 128,
                                       np.arange(0, 256), np.arange(0, 256),
                                       20)
    print("RN SHAPE!!!!!!!!!!:", radial_masks.shape)
    radial_masks = np.expand_dims(radial_masks, 1)  # (128, 1, 256, 256)
    #radial_masks = np.squeeze(np.stack((radial_masks,) * 3, -1)) # 43, 3, 256, 256
    #radial_masks = radial_masks.transpose([0, 3, 1, 2])
    radial_masks = radial_masks.astype(np.complex64)
    radial_masks = tf.expand_dims(radial_masks, 1)

    rn = tf.compat.v1.placeholder_with_default(radial_masks,
                                               [128, None, 1, 256, 256])
    rn_split = tf.split(rn, submit_config.num_gpus, axis=1)
    freq_nyq = int(np.floor(int(256) / 2.0))

    spatial_freq = radii.astype(np.float32) / freq_nyq
    spatial_freq = spatial_freq / max(spatial_freq)

    for gpu in range(submit_config.num_gpus):
        with tf.device("/gpu:%d" % gpu):
            net_gpu = net if gpu == 0 else net.clone()

            denoised_1 = net_gpu.get_output_for(noisy_input_split[gpu])
            denoised_2 = net_gpu.get_output_for(noisy_target_split[gpu])
            print(noisy_input_split[gpu].get_shape(),
                  rn_split[gpu].get_shape())
            if noise2noise:
                meansq_error = fourier_ring_correlation(
                    noisy_target_split[gpu], denoised_1, rn_split[gpu],
                    spatial_freq) - fourier_ring_correlation(
                        noisy_target_split[gpu] - denoised_2,
                        noisy_input_split[gpu] - denoised_1, rn_split[gpu],
                        spatial_freq)
            else:
                meansq_error = tf.reduce_mean(
                    tf.square(clean_target_split[gpu] - denoised))
            # Create an autosummary that will average over all GPUs
            #tf.summary.histogram(name, var)
            with tf.control_dependencies([autosummary("Loss", meansq_error)]):
                opt.register_gradients(meansq_error, net_gpu.trainables)

    train_step = opt.apply_updates()

    # Create a log file for Tensorboard
    summary_log = tf.compat.v1.summary.FileWriter(submit_config.run_dir)
    summary_log.add_graph(tf.compat.v1.get_default_graph())

    print('Training...')
    time_maintenance = ctx.get_time_since_last_update()
    ctx.update(loss='run %d' % submit_config.run_id,
               cur_epoch=0,
               max_epoch=iteration_count)

    # The actual training loop
    for i in range(iteration_count):
        # Whether to stop the training or not should be asked from the context
        if ctx.should_stop():
            break
        # Dump training status
        if i % eval_interval == 0:

            time_train = ctx.get_time_since_last_update()
            time_total = ctx.get_time_since_start()
            print("DEBUG TRAIN!", noisy_input.dtype, noisy_input[0][0].dtype)
            # Evaluate 'x' to draw a batch of inputs
            [source_mb, target_mb] = tfutil.run([noisy_input, clean_target])
            denoised = net.run(source_mb)
            save_image(submit_config, denoised[0],
                       "img_{0}_y_pred.tif".format(i))
            save_image(submit_config, target_mb[0], "img_{0}_y.tif".format(i))
            save_image(submit_config, source_mb[0],
                       "img_{0}_x_aug.tif".format(i))

            validation_set.evaluate(net, i,
                                    noise_augmenter.add_validation_noise_np)

            print(
                'iter %-10d time %-12s sec/eval %-7.1f sec/iter %-7.2f maintenance %-6.1f'
                % (autosummary('Timing/iter', i),
                   dnnlib.util.format_time(
                       autosummary('Timing/total_sec', time_total)),
                   autosummary('Timing/sec_per_eval', time_train),
                   autosummary('Timing/sec_per_iter',
                               time_train / eval_interval),
                   autosummary('Timing/maintenance_sec', time_maintenance)))

            dnnlib.tflib.autosummary.save_summaries(summary_log, i)
            ctx.update(loss='run %d' % submit_config.run_id,
                       cur_epoch=i,
                       max_epoch=iteration_count)
            time_maintenance = ctx.get_last_update_interval() - time_train

            save_snapshot(submit_config, net, str(i))
        lrate = compute_ramped_down_lrate(i, iteration_count, ramp_down_perc,
                                          learning_rate)
        tfutil.run([train_step], {lrate_in: lrate})

    print("Elapsed time: {0}".format(
        util.format_time(ctx.get_time_since_start())))
    save_snapshot(submit_config, net, 'final')

    # Summary log and context should be closed at the end
    summary_log.close()
    ctx.close()