def run_wrapper(submit_config: SubmitConfig) -> None: """Wrap the actual run function call for handling logging, exceptions, typing, etc.""" is_local = submit_config.submit_target == SubmitTarget.LOCAL checker = None # when running locally, redirect stderr to stdout, log stdout to a file, and force flushing if is_local: logger = util.Logger(file_name=os.path.join(submit_config.run_dir, "log.txt"), file_mode="w", should_flush=True) else: # when running in a cluster, redirect stderr to stdout, and just force flushing (log writing is handled by run.sh) logger = util.Logger(file_name=None, should_flush=True) import dnnlib dnnlib.submit_config = submit_config try: print("dnnlib: Running {0}() on {1}...".format( submit_config.run_func_name, submit_config.host_name)) start_time = time.time() util.call_func_by_name(func_name=submit_config.run_func_name, submit_config=submit_config, **submit_config.run_func_kwargs) print("dnnlib: Finished {0}() in {1}.".format( submit_config.run_func_name, util.format_time(time.time() - start_time))) except: if is_local: raise else: traceback.print_exc() log_src = os.path.join(submit_config.run_dir, "log.txt") log_dst = os.path.join( get_path_from_template(submit_config.run_dir_root), "{0}-error.txt".format(submit_config.run_name)) shutil.copyfile(log_src, log_dst) finally: open(os.path.join(submit_config.run_dir, "_finished.txt"), "w").close() dnnlib.submit_config = None logger.close() if checker is not None: checker.stop()
def train(submit_config: dnnlib.SubmitConfig, iteration_count: int, eval_interval: int, minibatch_size: int, learning_rate: float, ramp_down_perc: float, noise: dict, validation_config: dict, train_tfrecords: str, noise2noise: bool): noise_augmenter = dnnlib.util.call_func_by_name(**noise) validation_set = ValidationSet(submit_config) validation_set.load(**validation_config) # Create a run context (hides low level details, exposes simple API to manage the run) # noinspection PyTypeChecker ctx = dnnlib.RunContext(submit_config, config) # Initialize TensorFlow graph and session using good default settings tfutil.init_tf(config.tf_config) dataset_iter = create_dataset(train_tfrecords, minibatch_size, noise_augmenter.add_train_noise_tf) # Construct the network using the Network helper class and a function defined in config.net_config with tf.device("/gpu:0"): net = tflib.Network(**config.net_config) # Optionally print layer information net.print_layers() print('Building TensorFlow graph...') with tf.name_scope('Inputs'), tf.device("/cpu:0"): lrate_in = tf.placeholder(tf.float32, name='lrate_in', shape=[]) noisy_input, noisy_target, clean_target = dataset_iter.get_next() noisy_input_split = tf.split(noisy_input, submit_config.num_gpus) noisy_target_split = tf.split(noisy_target, submit_config.num_gpus) clean_target_split = tf.split(clean_target, submit_config.num_gpus) # Define the loss function using the Optimizer helper class, this will take care of multi GPU opt = tflib.Optimizer(learning_rate=lrate_in, **config.optimizer_config) for gpu in range(submit_config.num_gpus): with tf.device("/gpu:%d" % gpu): net_gpu = net if gpu == 0 else net.clone() denoised = net_gpu.get_output_for(noisy_input_split[gpu]) if noise2noise: meansq_error = tf.reduce_mean( tf.square(noisy_target_split[gpu] - denoised)) else: meansq_error = tf.reduce_mean( tf.square(clean_target_split[gpu] - denoised)) # Create an autosummary that will average over all GPUs with tf.control_dependencies([autosummary("Loss", meansq_error)]): opt.register_gradients(meansq_error, net_gpu.trainables) train_step = opt.apply_updates() # Create a log file for Tensorboard summary_log = tf.summary.FileWriter(submit_config.run_dir) summary_log.add_graph(tf.get_default_graph()) print('Training...') time_maintenance = ctx.get_time_since_last_update() ctx.update(loss='run %d' % submit_config.run_id, cur_epoch=0, max_epoch=iteration_count) # *********************************** # The actual training loop for i in range(iteration_count): # Whether to stop the training or not should be asked from the context if ctx.should_stop(): break # Dump training status if i % eval_interval == 0: time_train = ctx.get_time_since_last_update() time_total = ctx.get_time_since_start() # Evaluate 'x' to draw a batch of inputs [source_mb, target_mb] = tfutil.run([noisy_input, clean_target]) denoised = net.run(source_mb) save_image(submit_config, denoised[0], "img_{0}_y_pred.png".format(i)) save_image(submit_config, target_mb[0], "img_{0}_y.png".format(i)) save_image(submit_config, source_mb[0], "img_{0}_x_aug.png".format(i)) validation_set.evaluate(net, i, noise_augmenter.add_validation_noise_np) print( 'iter %-10d time %-12s eta %-12s sec/eval %-7.1f sec/iter %-7.2f maintenance %-6.1f' % (autosummary('Timing/iter', i), dnnlib.util.format_time( autosummary('Timing/total_sec', time_total)), dnnlib.util.format_time( autosummary('Timing/total_sec', (time_train / eval_interval) * (iteration_count - i))), autosummary('Timing/sec_per_eval', time_train), autosummary('Timing/sec_per_iter', time_train / eval_interval), autosummary('Timing/maintenance_sec', time_maintenance))) dnnlib.tflib.autosummary.save_summaries(summary_log, i) ctx.update(loss='run %d' % submit_config.run_id, cur_epoch=i, max_epoch=iteration_count) time_maintenance = ctx.get_last_update_interval() - time_train # Training epoch lrate = compute_ramped_down_lrate(i, iteration_count, ramp_down_perc, learning_rate) tfutil.run([train_step], {lrate_in: lrate}) # End of training print("Elapsed time: {0}".format( util.format_time(ctx.get_time_since_start()))) save_snapshot(submit_config, net, 'final') # Summary log and context should be closed at the end summary_log.close() ctx.close()
def train( submit_config: submit.SubmitConfig, iteration_count: int, eval_interval: int, minibatch_size: int, learning_rate: float, ramp_down_perc: float, noise: dict, tf_config: dict, net_config: dict, optimizer_config: dict, validation_config: dict, train_tfrecords: str): # **dict as argument means: take all additional named arguments to this function # and insert them into this parameter as dictionary entries. noise_augmenter = noise.func(**noise.func_kwargs) validation_set = ValidationSet(submit_config) # Load all images for validation as numpy arrays to the images attribute of the validation set. validation_set.load(**validation_config) # Create a run context (hides low level details, exposes simple API to manage the run) ctx = run_context.RunContext(submit_config) # Initialize TensorFlow graph and session using good default settings tfutil.init_tf(tf_config) # Creates the data set from the specified path to a generated tfrecords file containing all training images. # Data set will be split into minibatches of the given size and augment the noise with given noise function. # Use the dataset_tool_tf to create this tfrecords file. dataset_iter = create_dataset(train_tfrecords, minibatch_size, noise_augmenter.add_train_noise_tf) # Construct the network using the Network helper class and a function defined in config.net_config with tf.device("/gpu:0"): net = Network(**net_config) # Optionally print layer information net.print_layers() print('Building TensorFlow graph...') with tf.name_scope('Inputs'), tf.device("/cpu:0"): # Placeholder for the learning rate. This will get ramped down dynamically. lrate_in = tf.placeholder(tf.float32, name='lrate_in', shape=[]) # Defines the expression(s) that creates the network input. noisy_input, noisy_target, clean_target = dataset_iter.get_next() noisy_input_split = tf.split(noisy_input, submit_config.num_gpus) noisy_target_split = tf.split(noisy_target, submit_config.num_gpus) # Split over multiple GPUs # clean_target_split = tf.split(clean_target, submit_config.num_gpus) # -------------------------------------------------------------------------------------------- # Optimizer initialization and setup: # Define the loss function using the Optimizer helper class, this will take care of multi GPU opt = Optimizer(learning_rate=lrate_in, **optimizer_config) for gpu in range(submit_config.num_gpus): with tf.device("/gpu:%d" % gpu): # Create a clone for this network for other gpus to work on. net_gpu = net if gpu == 0 else net.clone() # Create the output expression by giving the input expression into the network. denoised = net_gpu.get_output_for(noisy_input_split[gpu]) # Create the error function as the MSE between the target tensor and the denoised network output. meansq_error = tf.reduce_mean(tf.square(noisy_target_split[gpu] - denoised)) # Create an autosummary that will average over all GPUs with tf.control_dependencies([autosummary("Loss", meansq_error)]): opt.register_gradients(meansq_error, net_gpu.trainables) train_step = opt.apply_updates() # Defines the update function of the optimizer. # Create a log file for Tensorboard summary_log = tf._api.v1.summary.FileWriter(submit_config.results_dir) summary_log.add_graph(tf.get_default_graph()) # -------------------------------------------------------------------------------------------- # Training and some milestone evaluation starts: print('Training...') time_maintenance = ctx.get_time_since_last_update() ctx.update() # TODO: why parameterized in reference? # The actual training loop for i in range(iteration_count): # Whether to stop the training or not should be asked from the context if ctx.should_stop(): break # Dump training status if i % eval_interval == 0: time_train = ctx.get_time_since_last_update() time_total = ctx.get_time_since_start() # Evaluate 'x' to draw one minbatch of inputs. Executes the operations defined in the dataset iterator. # Evals the noisy input and clean target minibatch Tensor ops to numpy array of the minibatch. [source_mb, target_mb] = tfutil.run([noisy_input, clean_target]) # Runs the noisy images through the network without training it. It is just for observing/evaluating. # net.run expects numpy arrays to run through this network. denoised = net.run(source_mb) # array shape: [minibatch_size, channel_size, height, width] util.save_image(submit_config, denoised[0], "img_{0}_y_pred.png".format(i)) util.save_image(submit_config, target_mb[0], "img_{0}_y.png".format(i)) util.save_image(submit_config, source_mb[0], "img_{0}_x_aug.png".format(i)) validation_set.evaluate(net, i, noise_augmenter.add_validation_noise_np) print('iter %-10d time %-12s sec/eval %-7.1f sec/iter %-7.2f maintenance %-6.1f' % ( autosummary('Timing/iter', i), dnnlib.util.format_time(autosummary('Timing/total_sec', time_total)), autosummary('Timing/sec_per_eval', time_train), autosummary('Timing/sec_per_iter', time_train / eval_interval), autosummary('Timing/maintenance_sec', time_maintenance))) dnnlib.tflib.autosummary.save_summaries(summary_log, i) ctx.update() time_maintenance = ctx.get_last_update_interval() - time_train lrate = compute_ramped_down_lrate(i, iteration_count, ramp_down_perc, learning_rate) # Apply the lrate value to the lrate_in placeholder for the optimizer. tfutil.run([train_step], {lrate_in: lrate}) # Run the training update through the network in our session. print("Elapsed time: {0}".format(dutil.format_time(ctx.get_time_since_start()))) util.save_snapshot(submit_config, net, 'final') # Summary log and context should be closed at the end summary_log.close() ctx.close()
def train(submit_config: dnnlib.SubmitConfig, iteration_count: int, eval_interval: int, minibatch_size: int, learning_rate: float, ramp_down_perc: float, noise: dict, validation_config: dict, train_tfrecords: str, noise2noise: bool): noise_augmenter = dnnlib.util.call_func_by_name(**noise) validation_set = ValidationSet(submit_config) validation_set.load(**validation_config) # Create a run context (hides low level details, exposes simple API to manage the run) ctx = dnnlib.RunContext(submit_config, config) # Initialize TensorFlow graph and session using good default settings tfutil.init_tf(config.tf_config) dataset_iter = create_dataset(train_tfrecords, minibatch_size, noise_augmenter.add_train_noise_tf) # Construct the network using the Network helper class and a function defined in config.net_config with tf.device("/gpu:0"): net = tflib.Network(**config.net_config) # Optionally print layer information net.print_layers() print('Building TensorFlow graph...') with tf.name_scope('Inputs'), tf.device("/cpu:0"): lrate_in = tf.compat.v1.placeholder(tf.float32, name='lrate_in', shape=[]) #print("DEBUG train:", "dataset iter got called") noisy_input, noisy_target, clean_target = dataset_iter.get_next() noisy_input_split = tf.split(noisy_input, submit_config.num_gpus) noisy_target_split = tf.split(noisy_target, submit_config.num_gpus) print(len(noisy_input_split), noisy_input_split) clean_target_split = tf.split(clean_target, submit_config.num_gpus) # Split [?, 3, 256, 256] across num_gpus over axis 0 (i.e. the batch) # Define the loss function using the Optimizer helper class, this will take care of multi GPU opt = tflib.Optimizer(learning_rate=lrate_in, **config.optimizer_config) radii = np.arange(128).reshape(128, 1) #image size 256, binning = 3 radial_masks = np.apply_along_axis(radial_mask, 1, radii, 128, 128, np.arange(0, 256), np.arange(0, 256), 20) print("RN SHAPE!!!!!!!!!!:", radial_masks.shape) radial_masks = np.expand_dims(radial_masks, 1) # (128, 1, 256, 256) #radial_masks = np.squeeze(np.stack((radial_masks,) * 3, -1)) # 43, 3, 256, 256 #radial_masks = radial_masks.transpose([0, 3, 1, 2]) radial_masks = radial_masks.astype(np.complex64) radial_masks = tf.expand_dims(radial_masks, 1) rn = tf.compat.v1.placeholder_with_default(radial_masks, [128, None, 1, 256, 256]) rn_split = tf.split(rn, submit_config.num_gpus, axis=1) freq_nyq = int(np.floor(int(256) / 2.0)) spatial_freq = radii.astype(np.float32) / freq_nyq spatial_freq = spatial_freq / max(spatial_freq) for gpu in range(submit_config.num_gpus): with tf.device("/gpu:%d" % gpu): net_gpu = net if gpu == 0 else net.clone() denoised_1 = net_gpu.get_output_for(noisy_input_split[gpu]) denoised_2 = net_gpu.get_output_for(noisy_target_split[gpu]) print(noisy_input_split[gpu].get_shape(), rn_split[gpu].get_shape()) if noise2noise: meansq_error = fourier_ring_correlation( noisy_target_split[gpu], denoised_1, rn_split[gpu], spatial_freq) - fourier_ring_correlation( noisy_target_split[gpu] - denoised_2, noisy_input_split[gpu] - denoised_1, rn_split[gpu], spatial_freq) else: meansq_error = tf.reduce_mean( tf.square(clean_target_split[gpu] - denoised)) # Create an autosummary that will average over all GPUs #tf.summary.histogram(name, var) with tf.control_dependencies([autosummary("Loss", meansq_error)]): opt.register_gradients(meansq_error, net_gpu.trainables) train_step = opt.apply_updates() # Create a log file for Tensorboard summary_log = tf.compat.v1.summary.FileWriter(submit_config.run_dir) summary_log.add_graph(tf.compat.v1.get_default_graph()) print('Training...') time_maintenance = ctx.get_time_since_last_update() ctx.update(loss='run %d' % submit_config.run_id, cur_epoch=0, max_epoch=iteration_count) # The actual training loop for i in range(iteration_count): # Whether to stop the training or not should be asked from the context if ctx.should_stop(): break # Dump training status if i % eval_interval == 0: time_train = ctx.get_time_since_last_update() time_total = ctx.get_time_since_start() print("DEBUG TRAIN!", noisy_input.dtype, noisy_input[0][0].dtype) # Evaluate 'x' to draw a batch of inputs [source_mb, target_mb] = tfutil.run([noisy_input, clean_target]) denoised = net.run(source_mb) save_image(submit_config, denoised[0], "img_{0}_y_pred.tif".format(i)) save_image(submit_config, target_mb[0], "img_{0}_y.tif".format(i)) save_image(submit_config, source_mb[0], "img_{0}_x_aug.tif".format(i)) validation_set.evaluate(net, i, noise_augmenter.add_validation_noise_np) print( 'iter %-10d time %-12s sec/eval %-7.1f sec/iter %-7.2f maintenance %-6.1f' % (autosummary('Timing/iter', i), dnnlib.util.format_time( autosummary('Timing/total_sec', time_total)), autosummary('Timing/sec_per_eval', time_train), autosummary('Timing/sec_per_iter', time_train / eval_interval), autosummary('Timing/maintenance_sec', time_maintenance))) dnnlib.tflib.autosummary.save_summaries(summary_log, i) ctx.update(loss='run %d' % submit_config.run_id, cur_epoch=i, max_epoch=iteration_count) time_maintenance = ctx.get_last_update_interval() - time_train save_snapshot(submit_config, net, str(i)) lrate = compute_ramped_down_lrate(i, iteration_count, ramp_down_perc, learning_rate) tfutil.run([train_step], {lrate_in: lrate}) print("Elapsed time: {0}".format( util.format_time(ctx.get_time_since_start()))) save_snapshot(submit_config, net, 'final') # Summary log and context should be closed at the end summary_log.close() ctx.close()