Esempio n. 1
0
def run(data_dir='./../datasets',
        result_dir='./../results',
        num_gpus=1,
        total_kimg=1000,
        mirror_augment=True):
    train = EasyDict(
        run_func_name='classifier_vgg.training_loop-vgg_rotation.training_loop'
    )
    classifier = EasyDict(
        func_name='classifier_vgg.network_classifier-vgg.classifier_vgg')
    classifier_opt = EasyDict(beta1=0.0, beta2=0.99, epsilon=1e-8)
    classifier_loss = EasyDict(func_name='classifier_vgg.loss.cross_entropy')
    sched = EasyDict()
    sc = dnnlib.SubmitConfig()
    tf_config = {'rnd.np_random_seed': 1000}

    # train.resume_pkl = './results/00254-classifier-single_class_model/network-snapshot-001000.pkl'
    # train.resume_kimg = 1000.0

    sched.minibatch_size_base = 32
    sched.minibatch_gpu_base = 8

    current_label = 'rotation'

    dataset = 'classifier_oversample_' + current_label
    print(dataset)
    train.data_dir = data_dir
    if not os.path.exists(train.data_dir):
        print('Error: dataset root directory does not exist.')
        sys.exit(1)
    train.total_kimg = total_kimg
    train.mirror_augment = True
    metrics = [
        EasyDict(name='acc_' + current_label,
                 func_name='metrics.accuracy_single_class.ACC',
                 test_dataset=dataset + '_test',
                 num_images=5000,
                 minibatch_per_gpu=8,
                 test_data_dir=data_dir)
    ]
    desc = 'classifier-single_class_' + current_label
    dataset_args = EasyDict(tfrecord_dir=dataset)

    assert num_gpus in [1, 2, 4, 8]
    sc.num_gpus = num_gpus

    sc.submit_target = dnnlib.SubmitTarget.LOCAL
    sc.local.do_not_copy_source_files = True
    kwargs = EasyDict(train)
    kwargs.update(classifier_args=classifier,
                  classifier_opt_args=classifier_opt,
                  classifier_loss_args=classifier_loss)
    kwargs.update(dataset_args=dataset_args,
                  sched_args=sched,
                  metric_arg_list=metrics,
                  tf_config=tf_config)
    kwargs.submit_config = copy.deepcopy(sc)
    kwargs.submit_config.run_dir_root = result_dir
    kwargs.submit_config.run_desc = desc
    dnnlib.submit_run(**kwargs)
def run(dataset, data_dir, result_dir, config_id, num_gpus, total_kimg, gamma,
        mirror_augment, metrics):
    train = EasyDict(
        run_func_name='training.training_loop.rotation.v5_int_reg.training_loop'
    )
    G = EasyDict(func_name='training.networks.rotation.v5_int_reg.G_main')
    D = EasyDict(func_name='training.networks.rotation.v5_int_reg.D_stylegan2')
    G_opt = EasyDict(beta1=0.0, beta2=0.99, epsilon=1e-8)
    D_opt = EasyDict(beta1=0.0, beta2=0.99, epsilon=1e-8)
    G_loss = EasyDict(
        func_name='training.loss.rotation.v5_int_reg.G_logistic_ns_pathreg')
    D_loss = EasyDict(
        func_name='training.loss.rotation.v5_int_reg.D_logistic_r1')
    sched = EasyDict()
    grid = EasyDict(size='1080p', layout='random')
    sc = dnnlib.SubmitConfig()
    tf_config = {'rnd.np_random_seed': 1000}

    train.data_dir = data_dir
    train.total_kimg = total_kimg
    train.mirror_augment = mirror_augment
    train.image_snapshot_ticks = train.network_snapshot_ticks = 10
    sched.G_lrate_base = sched.D_lrate_base = 0.002
    sched.minibatch_size_base = 32
    sched.minibatch_gpu_base = 4
    D_loss.gamma = 10
    metrics = [metric_defaults[x] for x in metrics]
    desc = 'rotation-v5-int-reg_256'

    G_loss.int_reg_clip = 5.0
    G_loss.rotation_step_size = 0.08 / 2

    dataset_args = EasyDict(tfrecord_dir=dataset)

    assert num_gpus in [1, 2, 4, 8]
    sc.num_gpus = num_gpus

    assert config_id in _valid_configs

    if gamma is not None:
        D_loss.gamma = gamma

    sc.submit_target = dnnlib.SubmitTarget.LOCAL
    sc.local.do_not_copy_source_files = True
    kwargs = EasyDict(train)
    kwargs.update(G_args=G,
                  D_args=D,
                  G_opt_args=G_opt,
                  D_opt_args=D_opt,
                  G_loss_args=G_loss,
                  D_loss_args=D_loss)
    kwargs.update(dataset_args=dataset_args,
                  sched_args=sched,
                  grid_args=grid,
                  metric_arg_list=metrics,
                  tf_config=tf_config)
    kwargs.submit_config = copy.deepcopy(sc)
    kwargs.submit_config.run_dir_root = result_dir
    kwargs.submit_config.run_desc = desc
    dnnlib.submit_run(**kwargs)
def run(data_dir='./../datasets',
        result_dir='./../results',
        num_gpus=2,
        total_kimg=1000):
    train = EasyDict(
        run_func_name='classifier.training_loop-single_class.training_loop')
    classifier = EasyDict(
        func_name='classifier.network_classifier-new_label.classifier')
    classifier_opt = EasyDict(beta1=0.0, beta2=0.99, epsilon=1e-8)
    classifier_loss = EasyDict(func_name='classifier.loss.euclidean')
    sched = EasyDict()
    sc = dnnlib.SubmitConfig()
    tf_config = {'rnd.np_random_seed': 1000}
    dataset = 'classifier_oversample_rotation_v7'

    sched.minibatch_size_base = 8
    sched.minibatch_gpu_base = 4

    train.data_dir = data_dir
    train.total_kimg = total_kimg

    desc = 'classifier_rotation_v7'

    metrics = [
        EasyDict(
            name='ACCv7',
            func_name='metrics.accuracy_v7.ACCv7',
            num_images=5000,
            minibatch_per_gpu=8,
            test_dataset='./../datasets/classifier_oversample_rotation_v7_test'
        )
    ]

    dataset_args = EasyDict(tfrecord_dir=dataset)

    assert num_gpus in [1, 2, 4, 8]
    sc.num_gpus = num_gpus

    sc.submit_target = dnnlib.SubmitTarget.LOCAL
    sc.local.do_not_copy_source_files = True
    kwargs = EasyDict(train)
    kwargs.update(classifier_args=classifier,
                  classifier_opt_args=classifier_opt,
                  classifier_loss_args=classifier_loss)
    kwargs.update(dataset_args=dataset_args,
                  sched_args=sched,
                  metric_arg_list=metrics,
                  tf_config=tf_config)
    kwargs.submit_config = copy.deepcopy(sc)
    kwargs.submit_config.run_dir_root = result_dir
    kwargs.submit_config.run_desc = desc
    dnnlib.submit_run(**kwargs)
Esempio n. 4
0
def run_auto(dataset, data_dir, result_dir, config_id, num_gpus, resolution,
             total_kimg, gamma, mirror_augment, metrics, train_auto):
    train = EasyDict(run_func_name='training.training_loop.training_auto_loop'
                     )  # Options for training loop.
    Enc = EasyDict(func_name='training.networks_stylegan2.Encoder'
                   )  # Options for encoder network.
    Dec = EasyDict(func_name='training.networks_stylegan2.Decoder'
                   )  # Options for decoder network.
    opt = EasyDict(beta1=0.0, beta2=0.99,
                   epsilon=1e-8)  # Options for autoencoder optimizer.
    loss = EasyDict(
        func_name='training.loss.auto_l1')  # Options for autoencoder loss.
    sched = EasyDict()  # Options for TrainingSchedule.
    grid = EasyDict(
        size='1080p',
        layout='random')  # Options for setup_snapshot_image_grid().
    sc = dnnlib.SubmitConfig()  # Options for dnnlib.submit_run().
    tf_config = {'rnd.np_random_seed': 1000}  # Options for tflib.init_tf().

    train.data_dir = data_dir
    train.total_kimg = total_kimg
    train.image_snapshot_ticks = 10
    train.network_snapshot_ticks = 125
    sched.lrate = 0.003
    sched.minibatch_size = 64
    sched.minibatch_gpu = 64
    desc = 'stylegan2-hrae'

    desc += '-' + dataset
    dataset_args = EasyDict(tfrecord_dir=dataset)
    dataset_args.resolution = resolution
    dataset_args.num_threads = 4

    assert num_gpus in [1, 2, 4, 8]
    sc.num_gpus = num_gpus
    desc += '-%dgpu' % num_gpus
    desc += '-auto'

    sc.submit_target = dnnlib.SubmitTarget.LOCAL
    sc.local.do_not_copy_source_files = True
    kwargs = EasyDict(train)
    kwargs.update(Enc_args=Enc, Dec_args=Dec, opt_args=opt, loss_args=loss)
    kwargs.update(dataset_args=dataset_args,
                  sched_args=sched,
                  grid_args=grid,
                  tf_config=tf_config)
    kwargs.submit_config = copy.deepcopy(sc)
    kwargs.submit_config.run_dir_root = result_dir
    kwargs.submit_config.run_desc = desc
    dnnlib.submit_run(**kwargs)
Esempio n. 5
0
def run(dataset, data_dir, result_dir, config_id, num_gpus, total_kimg, gamma, mirror_augment, metrics):
    train     = EasyDict(run_func_name='training.training_loop.conditional.v5_baseline.training_loop') # Options for training loop.
    G         = EasyDict(func_name='training.networks.conditional.baseline.G_main')       # Options for generator network.
    D         = EasyDict(func_name='training.networks.conditional.baseline.D_stylegan2')  # Options for discriminator network.
    G_opt     = EasyDict(beta1=0.0, beta2=0.99, epsilon=1e-8)                  # Options for generator optimizer.
    D_opt     = EasyDict(beta1=0.0, beta2=0.99, epsilon=1e-8)                  # Options for discriminator optimizer.
    G_loss    = EasyDict(func_name='training.loss.conditional.label_dropout.G_logistic_ns_pathreg')      # Options for generator loss.
    D_loss    = EasyDict(func_name='training.loss.conditional.label_dropout.D_logistic_r1')              # Options for discriminator loss.
    sched     = EasyDict()                                                     # Options for TrainingSchedule.
    grid      = EasyDict(size='1080p', layout='random')                           # Options for setup_snapshot_image_grid().
    sc        = dnnlib.SubmitConfig()                                          # Options for dnnlib.submit_run().
    tf_config = {'rnd.np_random_seed': 1000}                                   # Options for tflib.init_tf().

    # train.resume_pkl = './../results/00326-conditional_label_dropout_25/network-snapshot-000887.pkl'
    # train.resume_kimg = 887.0

    train.data_dir = data_dir
    train.total_kimg = total_kimg
    train.mirror_augment = mirror_augment
    train.image_snapshot_ticks = train.network_snapshot_ticks = 10
    sched.G_lrate_base = sched.D_lrate_base = 0.002
    sched.minibatch_size_base = 32
    sched.minibatch_gpu_base = 4
    D_loss.gamma = 10
    metrics = [metric_defaults[x] for x in metrics]
    desc = 'conditional_label_dropout_25'

    G_loss.label_dropout_prob = 0.5
    D_loss.label_dropout_prob = 0.5

    dataset_args = EasyDict(tfrecord_dir=dataset)

    assert num_gpus in [1, 2, 4, 8]
    sc.num_gpus = num_gpus

    if gamma is not None:
        D_loss.gamma = gamma

    sc.submit_target = dnnlib.SubmitTarget.LOCAL
    sc.local.do_not_copy_source_files = True
    kwargs = EasyDict(train)
    kwargs.update(G_args=G, D_args=D, G_opt_args=G_opt, D_opt_args=D_opt, G_loss_args=G_loss, D_loss_args=D_loss)
    kwargs.update(dataset_args=dataset_args, sched_args=sched, grid_args=grid, metric_arg_list=metrics, tf_config=tf_config)
    kwargs.submit_config = copy.deepcopy(sc)
    kwargs.submit_config.run_dir_root = result_dir
    kwargs.submit_config.run_desc = desc
    dnnlib.submit_run(**kwargs)
Esempio n. 6
0
def run(dataset,
        data_dir,
        result_dir,
        num_gpus,
        total_kimg,
        mirror_augment,
        metrics,
        resume_pkl,
        model_type='vc_gan2',
        latent_type='uniform',
        batch_size=32,
        batch_per_gpu=16,
        random_seed=1000,
        G_fmap_base=8,
        module_G_list=None,
        G_nf_scale=4,
        E_fmap_base=8,
        module_E_list=None,
        E_nf_scale=4,
        D_fmap_base=9,
        module_D_list=None,
        D_nf_scale=4,
        I_fmap_base=9,
        module_I_list=None,
        I_nf_scale=4,
        fmap_decay=0.15,
        fmap_min=16,
        fmap_max=512,
        n_samples_per=10,
        topk_dims_to_show=20,
        hy_beta=1,
        hy_gamma=0,
        hy_dcp=40,
        hy_ncut=1,
        hy_rec=20,
        hy_hes=20,
        hy_lin=20,
        hy_mat=80,
        hy_gmat=0,
        hy_oth=80,
        hy_det=0,
        hessian_type='no_act_points',
        n_act_points=10,
        lie_alg_init_type='oth',
        lie_alg_init_scale=0.1,
        G_lrate_base=0.002,
        D_lrate_base=None,
        lambda_d_factor=10.,
        lambda_od=1.,
        group_loss_type='_rec_mat_',
        group_feats_size=400,
        temp=0.67,
        n_discrete=0,
        drange_net=[-1, 1],
        recons_type='bernoulli_loss',
        use_group_decomp=False,
        snapshot_ticks=10):
    train = EasyDict(
        run_func_name='training.training_loop_vae.training_loop_vae'
    )  # Options for training loop.

    if not (module_G_list is None):
        module_G_list = _str_to_list(module_G_list)
        key_G_ls, size_G_ls, count_dlatent_G_size = split_module_names(
            module_G_list)
    if not (module_E_list is None):
        module_E_list = _str_to_list(module_E_list)
        key_E_ls, size_E_ls, count_dlatent_E_size = split_module_names(
            module_E_list)
    if not (module_D_list is None):
        module_D_list = _str_to_list(module_D_list)
        key_D_ls, size_D_ls, count_dlatent_D_size = split_module_names(
            module_D_list)
    if not (module_I_list is None):
        module_I_list = _str_to_list(module_I_list)
        key_I_ls, size_I_ls, count_dlatent_I_size = split_module_names(
            module_I_list)

    D = D_opt = D_loss = None
    E = EasyDict(func_name='training.vae_networks.E_main_modular',
                 fmap_min=fmap_min,
                 fmap_max=fmap_max,
                 fmap_decay=fmap_decay,
                 latent_size=count_dlatent_E_size,
                 group_feats_size=group_feats_size,
                 module_E_list=module_E_list,
                 nf_scale=E_nf_scale,
                 n_discrete=n_discrete,
                 fmap_base=2 << E_fmap_base)  # Options for encoder network.
    G = EasyDict(func_name='training.vae_networks.G_main_modular',
                 fmap_min=fmap_min,
                 fmap_max=fmap_max,
                 fmap_decay=fmap_decay,
                 latent_size=count_dlatent_G_size,
                 group_feats_size=group_feats_size,
                 module_G_list=module_G_list,
                 nf_scale=G_nf_scale,
                 n_discrete=n_discrete,
                 recons_type=recons_type,
                 n_act_points=n_act_points,
                 lie_alg_init_type=lie_alg_init_type,
                 lie_alg_init_scale=lie_alg_init_scale,
                 fmap_base=2 << G_fmap_base)  # Options for generator network.
    I = EasyDict(func_name='training.vae_I_networks.I_main_modular',
                 fmap_min=fmap_min,
                 fmap_max=fmap_max,
                 fmap_decay=fmap_decay,
                 latent_size=count_dlatent_I_size,
                 module_I_list=module_I_list,
                 nf_scale=I_nf_scale,
                 fmap_base=2 << I_fmap_base)  # Options for I network.
    G_opt = EasyDict(beta1=0.9, beta2=0.999,
                     epsilon=1e-8)  # Options for generator optimizer.
    if model_type == 'factor_vae' or model_type == 'factor_sindis_vae':  # Factor-VAE
        D = EasyDict(
            func_name='training.vae_networks.D_factor_vae_modular',
            fmap_min=fmap_min,
            fmap_max=fmap_max,
            fmap_decay=fmap_decay,
            latent_size=count_dlatent_D_size,
            module_D_list=module_D_list,
            nf_scale=D_nf_scale,
            fmap_base=2 << D_fmap_base)  # Options for generator network.
        D_opt = EasyDict(beta1=0.5, beta2=0.9,
                         epsilon=1e-8)  # Options for discriminator optimizer.
    desc = model_type + '_modular'

    if model_type == 'beta_vae':  # Beta-VAE
        G_loss = EasyDict(
            func_name='training.loss_vae.beta_vae',
            latent_type=latent_type,
            hy_beta=hy_beta,
            recons_type=recons_type)  # Options for generator loss.
    elif model_type == 'betatc_vae':  # BetaTC-VAE
        G_loss = EasyDict(
            func_name='training.loss_vae.betatc_vae',
            latent_type=latent_type,
            hy_beta=hy_beta,
            recons_type=recons_type)  # Options for generator loss.
    elif model_type == 'lie_vae':  # LieVAE
        G_loss = EasyDict(
            func_name='training.loss_vae_lie.lie_vae',
            latent_type=latent_type,
            hy_rec=hy_rec,
            hy_dcp=hy_dcp,
            hy_hes=hy_hes,
            hy_lin=hy_lin,
            hy_ncut=hy_ncut,
            recons_type=recons_type)  # Options for generator loss.
    elif model_type == 'lie_vae_with_split':  # LieVAE with split loss
        G_loss = EasyDict(
            func_name='training.loss_vae_lie.lie_vae_with_split',
            latent_type=latent_type,
            hy_rec=hy_rec,
            hy_dcp=hy_dcp,
            hy_hes=hy_hes,
            hy_lin=hy_lin,
            hy_ncut=hy_ncut,
            recons_type=recons_type)  # Options for generator loss.
    elif model_type == 'group_vae_v2':  # GroupVAE-v2
        G_loss = EasyDict(
            func_name='training.loss_vae_group_v2.group_act_vae',
            latent_type=latent_type,
            hy_beta=hy_beta,
            hy_rec=hy_rec,
            hy_gmat=hy_gmat,
            hy_dcp=hy_dcp,
            hy_hes=hy_hes,
            hy_lin=hy_lin,
            hy_ncut=hy_ncut,
            hessian_type=hessian_type,
            recons_type=recons_type)  # Options for generator loss.
    elif model_type == 'group_vae_spl_v2':  # GroupVAE-v2
        G_loss = EasyDict(
            func_name='training.loss_vae_group_v2.group_act_spl_vae',
            latent_type=latent_type,
            hy_beta=hy_beta,
            hy_rec=hy_rec,
            hy_gmat=hy_gmat,
            hy_dcp=hy_dcp,
            hy_hes=hy_hes,
            hy_lin=hy_lin,
            hy_ncut=hy_ncut,
            hessian_type=hessian_type,
            recons_type=recons_type)  # Options for generator loss.
    elif model_type == 'group_vae':  # Group-VAE
        G_loss = EasyDict(
            func_name='training.loss_vae.group_vae',
            latent_type=latent_type,
            hy_beta=hy_beta,
            hy_dcp=hy_dcp,
            hy_ncut=hy_ncut,
            hy_rec=hy_rec,
            hy_mat=hy_mat,
            hy_gmat=hy_gmat,
            hy_oth=hy_oth,
            hy_det=hy_det,
            use_group_decomp=use_group_decomp,
            group_loss_type=group_loss_type,
            recons_type=recons_type)  # Options for generator loss.
    elif model_type == 'group_vae_wc':  # Group-VAE-with_Cat
        G_loss = EasyDict(
            func_name='training.loss_vae.group_vae_wc',
            latent_type=latent_type,
            hy_beta=hy_beta,
            hy_gamma=hy_gamma,
            temp=temp,
            use_group_decomp=use_group_decomp,
            group_loss_type=group_loss_type,
            recons_type=recons_type)  # Options for generator loss.
    elif model_type == 'dip_vae_i' or model_type == 'dip_vae_ii':  # DIP-VAE
        G_loss = EasyDict(
            func_name='training.loss_vae.dip_vae',
            lambda_d_factor=lambda_d_factor,
            lambda_od=lambda_od,
            latent_type=latent_type,
            dip_type=model_type,
            recons_type=recons_type)  # Options for generator loss.
    elif model_type == 'factor_vae':  # Factor-VAE
        G_loss = EasyDict(
            func_name='training.loss_vae.factor_vae_G',
            latent_type=latent_type,
            hy_gamma=hy_gamma,
            recons_type=recons_type)  # Options for generator loss.
        D_loss = EasyDict(
            func_name='training.loss_vae.factor_vae_D',
            latent_type=latent_type)  # Options for discriminator loss.
    elif model_type == 'factor_sindis_vae':  # Factor-VAE
        G_loss = EasyDict(
            func_name='training.loss_vae.factor_vae_sindis_G',
            latent_type=latent_type,
            hy_gamma=hy_gamma,
            recons_type=recons_type)  # Options for generator loss.
        D_loss = EasyDict(
            func_name='training.loss_vae.factor_vae_sindis_D',
            latent_type=latent_type)  # Options for discriminator loss.

    sched = EasyDict()  # Options for TrainingSchedule.
    grid = EasyDict(
        size='1080p',
        layout='random')  # Options for setup_snapshot_image_grid().
    sc = dnnlib.SubmitConfig()  # Options for dnnlib.submit_run().
    tf_config = {
        'rnd.np_random_seed': random_seed,
        'allow_soft_placement': True
    }  # Options for tflib.init_tf().

    train.data_dir = data_dir
    train.total_kimg = total_kimg
    train.mirror_augment = mirror_augment
    train.image_snapshot_ticks = train.network_snapshot_ticks = snapshot_ticks
    sched.G_lrate_base = G_lrate_base
    sched.D_lrate_base = D_lrate_base
    sched.minibatch_size_base = batch_size
    sched.minibatch_gpu_base = batch_per_gpu
    metrics = [metric_defaults[x] for x in metrics]

    desc += '-' + dataset
    dataset_args = EasyDict(tfrecord_dir=dataset, max_label_size='full')

    assert num_gpus in [1, 2, 4, 8]
    sc.num_gpus = num_gpus
    desc += '-%dgpu' % num_gpus

    sc.submit_target = dnnlib.SubmitTarget.LOCAL
    sc.local.do_not_copy_source_files = True
    kwargs = EasyDict(train)
    kwargs.update(G_args=G,
                  E_args=E,
                  D_args=D,
                  G_opt_args=G_opt,
                  D_opt_args=D_opt,
                  G_loss_args=G_loss,
                  D_loss_args=D_loss,
                  traversal_grid=True)
    kwargs.update(dataset_args=dataset_args,
                  sched_args=sched,
                  grid_args=grid,
                  n_continuous=count_dlatent_G_size,
                  n_discrete=n_discrete,
                  drange_net=drange_net,
                  metric_arg_list=metrics,
                  tf_config=tf_config,
                  resume_pkl=resume_pkl,
                  n_samples_per=n_samples_per,
                  topk_dims_to_show=topk_dims_to_show)
    kwargs.submit_config = copy.deepcopy(sc)
    kwargs.submit_config.run_dir_root = result_dir
    kwargs.submit_config.run_desc = desc
    dnnlib.submit_run(**kwargs)
Esempio n. 7
0
def run(dataset,
        data_dir,
        result_dir,
        config_id,
        num_gpus,
        total_kimg,
        gamma,
        mirror_augment,
        metrics,
        resume_G_pkl=None,
        n_batch=2,
        n_batch_per_gpu=1,
        D_global_size=0,
        C_global_size=10,
        model_type='hd_dis_model',
        latent_type='uniform',
        resume_pkl=None,
        n_samples_per=4,
        D_lambda=0,
        C_lambda=1,
        epsilon_in_loss=3,
        random_eps=True,
        M_lrmul=0.1,
        resolution_manual=1024,
        pretrained_type='with_stylegan2',
        traj_lambda=None,
        level_I_kimg=1000,
        use_level_training=False,
        resume_kimg=0,
        use_std_in_m=False,
        prior_latent_size=512,
        stylegan2_dlatent_size=512,
        stylegan2_mapping_fmaps=512,
        M_mapping_fmaps=512,
        hyperplane_lambda=1,
        hyperdir_lambda=1):
    train = EasyDict(
        run_func_name='training.training_loop_hdwG.training_loop_hdwG')
    G = EasyDict(func_name='training.hd_networks_stylegan2.G_main',
                 latent_size=prior_latent_size,
                 dlatent_size=stylegan2_dlatent_size,
                 mapping_fmaps=stylegan2_mapping_fmaps,
                 mapping_lrmul=M_lrmul,
                 style_mixing_prob=None,
                 dlatent_avg_beta=None,
                 truncation_psi=None,
                 normalize_latents=False,
                 structure='fixed')
    D = EasyDict(func_name='training.networks_stylegan2.D_stylegan2')
    if model_type == 'hd_hyperplane':
        M = EasyDict(func_name='training.hd_networks.net_M_hyperplane',
                     C_global_size=C_global_size,
                     D_global_size=D_global_size,
                     latent_size=prior_latent_size,
                     mapping_lrmul=M_lrmul,
                     use_std_in_m=use_std_in_m)
        I = EasyDict(func_name='training.hd_networks.net_I',
                     C_global_size=C_global_size,
                     D_global_size=D_global_size)
    elif model_type == 'vc_gan_preprior':
        M = EasyDict(func_name='training.hd_networks.net_M_vc',
                     C_global_size=C_global_size,
                     D_global_size=D_global_size,
                     latent_size=prior_latent_size,
                     mapping_lrmul=M_lrmul,
                     use_std_in_m=use_std_in_m)
        I = EasyDict(func_name='training.hd_networks.net_I',
                     C_global_size=C_global_size,
                     D_global_size=D_global_size)
    elif model_type == 'vc_gan':
        M = EasyDict(func_name='training.hd_networks.net_M_empty',
                     C_global_size=C_global_size,
                     D_global_size=D_global_size,
                     latent_size=prior_latent_size,
                     mapping_lrmul=M_lrmul,
                     use_std_in_m=use_std_in_m)
        I = EasyDict(func_name='training.hd_networks.net_I',
                     C_global_size=C_global_size,
                     D_global_size=D_global_size)
        G.mapping_func = 'G_mapping_hd_dis_to_dlatent'
    else:
        M = EasyDict(func_name='training.hd_networks.net_M',
                     C_global_size=C_global_size,
                     D_global_size=D_global_size,
                     latent_size=prior_latent_size,
                     mapping_fmaps=M_mapping_fmaps,
                     mapping_lrmul=M_lrmul,
                     use_std_in_m=use_std_in_m)
        I = EasyDict(func_name='training.hd_networks.net_I',
                     C_global_size=C_global_size,
                     D_global_size=D_global_size)
    if model_type == 'hd_dis_model_with_cls':
        I_info = EasyDict(func_name='training.hd_networks.net_I_info',
                          C_global_size=C_global_size,
                          D_global_size=D_global_size)
    else:
        I_info = EasyDict()
    I_opt = EasyDict(beta1=0.0, beta2=0.99, epsilon=1e-8)
    D_opt = EasyDict(beta1=0.0, beta2=0.99, epsilon=1e-8)
    if model_type == 'vc_gan':
        I_loss = EasyDict(func_name='training.loss_hdwG.IandG_vc_loss',
                          latent_type=latent_type,
                          D_global_size=D_global_size,
                          C_global_size=C_global_size,
                          D_lambda=D_lambda,
                          C_lambda=C_lambda,
                          epsilon=epsilon_in_loss,
                          random_eps=random_eps,
                          traj_lambda=traj_lambda,
                          resolution_manual=resolution_manual,
                          use_std_in_m=use_std_in_m,
                          model_type=model_type,
                          hyperplane_lambda=hyperplane_lambda,
                          prior_latent_size=prior_latent_size,
                          hyperdir_lambda=hyperdir_lambda)
    else:
        I_loss = EasyDict(
            func_name='training.loss_hdwG.IandMandG_hyperplane_loss',
            latent_type=latent_type,
            D_global_size=D_global_size,
            C_global_size=C_global_size,
            D_lambda=D_lambda,
            C_lambda=C_lambda,
            epsilon=epsilon_in_loss,
            random_eps=random_eps,
            traj_lambda=traj_lambda,
            resolution_manual=resolution_manual,
            use_std_in_m=use_std_in_m,
            model_type=model_type,
            hyperplane_lambda=hyperplane_lambda,
            prior_latent_size=prior_latent_size,
            hyperdir_lambda=hyperdir_lambda)
    D_loss = EasyDict(func_name='training.loss.D_logistic_r1')
    sched = EasyDict()
    grid = EasyDict(size='1080p', layout='random')
    sc = dnnlib.SubmitConfig()
    tf_config = {'rnd.np_random_seed': 1000}

    train.data_dir = data_dir
    train.total_kimg = total_kimg
    train.mirror_augment = mirror_augment
    train.image_snapshot_ticks = train.network_snapshot_ticks = 10
    sched.G_lrate_base = sched.D_lrate_base = 0.002
    sched.minibatch_size_base = n_batch
    sched.minibatch_gpu_base = n_batch_per_gpu
    D_loss.gamma = 10
    metrics = [metric_defaults[x] for x in metrics]
    desc = 'hdwG_disentanglement'

    desc += '-' + dataset
    dataset_args = EasyDict(tfrecord_dir=dataset)

    assert num_gpus in [1, 2, 4, 8]
    sc.num_gpus = num_gpus
    desc += '-%dgpu' % num_gpus

    assert config_id in _valid_configs
    desc += '-' + config_id

    # Configs A-E: Shrink networks to match original StyleGAN.
    if config_id != 'config-f':
        # G.fmap_base = D.fmap_base = 8 << 10
        if resolution_manual <= 256:
            I.fmap_base = 2 << 8
            G.fmap_base = 2 << 10
            D.fmap_base = 2 << 8
        else:
            I.fmap_base = 8 << 10
            G.fmap_base = D.fmap_base = 8 << 10

    # Config E: Set gamma to 100 and override G & D architecture.
    if config_id.startswith('config-e'):
        D_loss.gamma = 100
        if 'Gorig' in config_id: G.architecture = 'orig'
        if 'Gskip' in config_id: G.architecture = 'skip'  # (default)
        if 'Gresnet' in config_id: G.architecture = 'resnet'
        if 'Dorig' in config_id: D.architecture = 'orig'
        if 'Dskip' in config_id: D.architecture = 'skip'
        if 'Dresnet' in config_id: D.architecture = 'resnet'  # (default)

    # Configs A-D: Enable progressive growing and switch to networks that support it.
    if config_id in ['config-a', 'config-b', 'config-c', 'config-d']:
        # sched.lod_initial_resolution = 8
        sched.G_lrate_base = sched.D_lrate_base = 0.002
        # sched.G_lrate_dict = sched.D_lrate_dict = {128: 0.0015, 256: 0.002, 512: 0.003, 1024: 0.003}
        sched.minibatch_size_base = n_batch  # (default)
        # sched.minibatch_size_dict = {8: 256, 16: 128, 32: 64, 64: 32}
        sched.minibatch_gpu_base = n_batch_per_gpu  # (default)
        # sched.minibatch_gpu_dict = {8: 32, 16: 16, 32: 8, 64: 4}
        # G.synthesis_func = 'hd_networks_stylegan2.G_synthesis_stylegan_revised'
        G.synthesis_func = 'G_synthesis_stylegan_revised_hd'
        # D.func_name = 'training.networks_stylegan2.D_stylegan'

    # Configs A-B: Disable lazy regularization.
    if config_id in ['config-a', 'config-b']:
        train.lazy_regularization = False

    # Config A: Switch to original StyleGAN networks.
    if config_id == 'config-a':
        G = EasyDict(func_name='training.networks_stylegan.G_style')
        D = EasyDict(func_name='training.networks_stylegan.D_basic')

    if gamma is not None:
        D_loss.gamma = gamma

    sc.submit_target = dnnlib.SubmitTarget.LOCAL
    sc.local.do_not_copy_source_files = True
    kwargs = EasyDict(train)
    kwargs.update(G_args=G,
                  D_args=D,
                  I_args=I,
                  M_args=M,
                  I_opt_args=I_opt,
                  D_opt_args=D_opt,
                  I_loss_args=I_loss,
                  D_loss_args=D_loss,
                  resume_pkl=resume_pkl,
                  resume_G_pkl=resume_G_pkl)
    kwargs.update(dataset_args=dataset_args,
                  sched_args=sched,
                  grid_args=grid,
                  use_hd_with_cls=(model_type == 'hd_dis_model_with_cls'),
                  use_hyperplane=(model_type == 'hd_hyperplane'),
                  metric_arg_list=metrics,
                  tf_config=tf_config,
                  n_discrete=D_global_size,
                  n_continuous=C_global_size,
                  n_samples_per=n_samples_per,
                  resolution_manual=resolution_manual,
                  pretrained_type=pretrained_type,
                  level_I_kimg=level_I_kimg,
                  use_level_training=use_level_training,
                  resume_kimg=resume_kimg,
                  use_std_in_m=use_std_in_m,
                  prior_latent_size=prior_latent_size,
                  latent_type=latent_type)
    kwargs.submit_config = copy.deepcopy(sc)
    kwargs.submit_config.run_dir_root = result_dir
    kwargs.submit_config.run_desc = desc
    dnnlib.submit_run(**kwargs)
Esempio n. 8
0
def run(
        dataset,
        data_dir,
        result_dir,
        config_id,
        num_gpus,
        total_kimg,
        gamma,
        mirror_augment,
        metrics,
        resume_pkl,
        D_global_size=3,
        C_global_size=0,  # Global C_latents.
        sb_C_global_size=4,
        C_local_hfeat_size=0,  # Local heatmap*features learned C_latents.
        C_local_heat_size=0,  # Local heatmap learned C_latents.
        n_samples_per=10,
        module_list=None,
        single_const=True,
        model_type='spatial_biased'):
    # print('module_list:', module_list)
    train = EasyDict(
        run_func_name='training.training_loop_dsp.training_loop_dsp'
    )  # Options for training loop.
    if model_type == 'spatial_biased':
        G = EasyDict(
            func_name=
            'training.spatial_biased_networks.G_main_spatial_biased_dsp',
            mapping_fmaps=128,
            fmap_max=128,
            latent_size=D_global_size + sb_C_global_size,
            dlatent_size=D_global_size + sb_C_global_size,
            D_global_size=D_global_size,
            sb_C_global_size=sb_C_global_size
        )  # Options for generator network.
        desc = 'spatial_biased_net'
    elif model_type == 'sb_general':
        G = EasyDict(
            func_name=
            'training.spatial_biased_networks.G_main_spatial_biased_dsp',
            synthesis_func='G_synthesis_sb_general_dsp',
            mapping_fmaps=128,
            fmap_max=128,
            latent_size=D_global_size + C_global_size + sb_C_global_size +
            C_local_hfeat_size + C_local_heat_size,
            dlatent_size=D_global_size + C_global_size + sb_C_global_size +
            C_local_hfeat_size + C_local_heat_size,
            D_global_size=D_global_size,
            C_global_size=C_global_size,
            sb_C_global_size=sb_C_global_size,
            C_local_hfeat_size=C_local_hfeat_size,
            C_local_heat_size=C_local_heat_size,
            use_noise=False)  # Options for generator network.
        desc = 'sb_general_net'
    elif model_type == 'sb_modular':
        module_list = _str_to_list(module_list)
        key_ls, size_ls, count_dlatent_size, _ = split_module_names(
            module_list)
        for i, key in enumerate(key_ls):
            if key.startswith('D_global'):
                D_global_size = size_ls[i]
                break
        print('D_global_size:', D_global_size)
        G = EasyDict(
            func_name=
            'training.spatial_biased_networks.G_main_spatial_biased_dsp',
            synthesis_func='G_synthesis_sb_modular',
            mapping_fmaps=128,
            fmap_max=128,
            latent_size=count_dlatent_size,
            dlatent_size=count_dlatent_size,
            D_global_size=D_global_size,
            module_list=module_list,
            single_const=single_const,
            use_noise=False)  # Options for generator network.
        desc = 'sb_modular_net'
    elif model_type == 'sb_singlelayer_modi':
        G = EasyDict(func_name='training.simple_networks.G_main_simple_dsp',
                     synthesis_func='G_synthesis_sb_singlelayer_modi_dsp',
                     mapping_fmaps=128,
                     fmap_max=128,
                     latent_size=D_global_size + sb_C_global_size,
                     dlatent_size=D_global_size + sb_C_global_size,
                     D_global_size=D_global_size,
                     sb_C_global_size=sb_C_global_size
                     )  # Options for generator network.
        desc = 'sb_singlelayer_net'
    elif model_type == 'stylegan2':
        G = EasyDict(
            func_name=
            'training.spatial_biased_networks.G_main_spatial_biased_dsp',
            dlatent_avg_beta=None,
            mapping_fmaps=128,
            fmap_max=128,
            latent_size=12,
            D_global_size=D_global_size,
            sb_C_global_size=sb_C_global_size
        )  # Options for generator network.
        desc = 'stylegan2_net'
    elif model_type == 'simple':
        G = EasyDict(func_name='training.simple_networks.G_main_simple_dsp',
                     latent_size=D_global_size + sb_C_global_size,
                     dlatent_size=D_global_size + sb_C_global_size,
                     D_global_size=D_global_size,
                     sb_C_global_size=sb_C_global_size
                     )  # Options for generator network.
    else:
        raise ValueError('Not supported model tyle: ' + model_type)

    if model_type == 'simple':
        D = EasyDict(func_name='training.simple_networks.D_simple_dsp'
                     )  # Options for discriminator network.
    else:
        D = EasyDict(func_name='training.networks_stylegan2.D_stylegan2',
                     fmap_max=128)  # Options for discriminator network.
        # D         = EasyDict(func_name='training.spatial_biased_networks.D_with_discrete_dsp', fmap_max=128)  # Options for discriminator network.
    G_opt = EasyDict(beta1=0.0, beta2=0.99,
                     epsilon=1e-8)  # Options for generator optimizer.
    D_opt = EasyDict(beta1=0.0, beta2=0.99,
                     epsilon=1e-8)  # Options for discriminator optimizer.
    G_loss = EasyDict(
        func_name='training.loss.G_logistic_ns_dsp',
        D_global_size=D_global_size)  # Options for generator loss.
    D_loss = EasyDict(
        func_name='training.loss.D_logistic_r1_dsp',
        D_global_size=D_global_size)  # Options for discriminator loss.
    sched = EasyDict()  # Options for TrainingSchedule.
    grid = EasyDict(
        size='1080p',
        layout='random')  # Options for setup_snapshot_image_grid().
    sc = dnnlib.SubmitConfig()  # Options for dnnlib.submit_run().
    tf_config = {'rnd.np_random_seed': 1000}  # Options for tflib.init_tf().

    train.data_dir = data_dir
    train.total_kimg = total_kimg
    train.mirror_augment = mirror_augment
    train.image_snapshot_ticks = train.network_snapshot_ticks = 10
    sched.G_lrate_base = sched.D_lrate_base = 0.002
    sched.minibatch_size_base = 32
    sched.minibatch_gpu_base = 4
    D_loss.gamma = 10
    metrics = [metric_defaults[x] for x in metrics]

    desc += '-' + dataset
    dataset_args = EasyDict(tfrecord_dir=dataset, max_label_size='full')

    assert num_gpus in [1, 2, 4, 8]
    sc.num_gpus = num_gpus
    desc += '-%dgpu' % num_gpus

    assert config_id in _valid_configs
    desc += '-' + config_id

    # Configs A-E: Shrink networks to match original StyleGAN.
    if config_id != 'config-f':
        G.fmap_base = D.fmap_base = 8 << 10

    # Config E: Set gamma to 100 and override G & D architecture.
    if config_id.startswith('config-e'):
        D_loss.gamma = 100
        if 'Gorig' in config_id: G.architecture = 'orig'
        if 'Gskip' in config_id: G.architecture = 'skip'  # (default)
        if 'Gresnet' in config_id: G.architecture = 'resnet'
        if 'Dorig' in config_id: D.architecture = 'orig'
        if 'Dskip' in config_id: D.architecture = 'skip'
        if 'Dresnet' in config_id: D.architecture = 'resnet'  # (default)

    if gamma is not None:
        D_loss.gamma = gamma

    sc.submit_target = dnnlib.SubmitTarget.LOCAL
    sc.local.do_not_copy_source_files = True
    kwargs = EasyDict(train)
    kwargs.update(G_args=G,
                  D_args=D,
                  G_opt_args=G_opt,
                  D_opt_args=D_opt,
                  G_loss_args=G_loss,
                  D_loss_args=D_loss,
                  traversal_grid=True)
    if model_type == 'sb_modular':
        n_continuous = 0
        for i, key in enumerate(key_ls):
            m_name = key.split('-')[0]
            if (m_name in LATENT_MODULES) and (not m_name == 'D_global'):
                n_continuous += size_ls[i]
    else:
        n_continuous = C_global_size + sb_C_global_size + \
            C_local_hfeat_size + C_local_heat_size
    kwargs.update(dataset_args=dataset_args,
                  sched_args=sched,
                  grid_args=grid,
                  metric_arg_list=metrics,
                  tf_config=tf_config,
                  resume_pkl=resume_pkl,
                  n_discrete=D_global_size,
                  n_continuous=n_continuous,
                  n_samples_per=n_samples_per)
    kwargs.submit_config = copy.deepcopy(sc)
    kwargs.submit_config.run_dir_root = result_dir
    kwargs.submit_config.run_desc = desc
    dnnlib.submit_run(**kwargs)
Esempio n. 9
0
def run(dataset,
        data_dir,
        result_dir,
        config_id,
        num_gpus,
        total_kimg,
        gamma,
        mirror_augment,
        metrics,
        resume_pkl,
        I_fmap_base=8,
        G_fmap_base=8,
        D_fmap_base=9,
        fmap_decay=0.15,
        D_lambda=1,
        C_lambda=1,
        cls_alpha=0,
        n_samples_per=10,
        module_list=None,
        model_type='vc_gan2',
        epsilon_loss=3,
        random_eps=False,
        latent_type='uniform',
        delta_type='onedim',
        connect_mode='concat',
        batch_size=32,
        batch_per_gpu=16,
        return_atts=False,
        random_seed=1000,
        module_I_list=None,
        module_D_list=None,
        fmap_min=16,
        fmap_max=512,
        G_nf_scale=4,
        I_nf_scale=4,
        D_nf_scale=4,
        outlier_detector=False,
        gen_atts_in_D=False,
        no_atts_in_D=False,
        att_lambda=0,
        dlatent_size=24,
        arch='resnet',
        opt_reset_ls=None,
        norm_ord=2,
        n_dim_strict=0,
        drop_extra_torgb=False,
        latent_split_ls_for_std_gen=[5, 5, 5, 5],
        loose_rate=0.2,
        topk_dims_to_show=20,
        n_neg_samples=1,
        temperature=1.,
        learning_rate=0.002,
        avg_mv_for_I=False,
        use_cascade=False,
        cascade_alt_freq_k=1,
        regW_lambda=1,
        network_snapshot_ticks=10):
    # print('module_list:', module_list)
    train = EasyDict(
        run_func_name='training.training_loop_vc2.training_loop_vc2'
    )  # Options for training loop.
    if opt_reset_ls is not None:
        opt_reset_ls = _str_to_list_of_int(opt_reset_ls)

    D_global_size = 0
    if not (module_list is None):
        module_list = _str_to_list(module_list)
        key_ls, size_ls, count_dlatent_size = split_module_names(module_list)
        for i, key in enumerate(key_ls):
            if key.startswith('D_global') or key.startswith('D_nocond_global'):
                D_global_size += size_ls[i]
    else:
        count_dlatent_size = dlatent_size

    if not (module_I_list is None):
        D_global_I_size = 0
        module_I_list = _str_to_list(module_I_list)
        key_I_ls, size_I_ls, count_dlatent_I_size = split_module_names(
            module_I_list)
        for i, key in enumerate(key_I_ls):
            if key.startswith('D_global') or key.startswith('D_nocond_global'):
                D_global_I_size += size_I_ls[i]
    if not (module_D_list is None):
        D_global_D_size = 0
        module_D_list = _str_to_list(module_D_list)
        key_D_ls, size_D_ls, count_dlatent_D_size = split_module_names(
            module_D_list)
        for i, key in enumerate(key_D_ls):
            if key.startswith('D_global') or key.startswith('D_nocond_global'):
                D_global_D_size += size_D_ls[i]

    if model_type == 'vc2_info_gan':  # G1 and G2 version InfoGAN
        G = EasyDict(func_name='training.vc_networks2.G_main_vc2',
                     synthesis_func='G_synthesis_modular_vc2',
                     fmap_min=fmap_min,
                     fmap_max=fmap_max,
                     fmap_decay=fmap_decay,
                     latent_size=count_dlatent_size,
                     dlatent_size=count_dlatent_size,
                     D_global_size=D_global_size,
                     module_list=module_list,
                     use_noise=True,
                     return_atts=return_atts,
                     G_nf_scale=G_nf_scale)  # Options for generator network.
        D = EasyDict(func_name='training.vc_networks2.D_info_modular_vc2',
                     dlatent_size=count_dlatent_D_size,
                     D_global_size=D_global_D_size,
                     fmap_min=fmap_min,
                     fmap_max=fmap_max,
                     connect_mode=connect_mode,
                     module_D_list=module_D_list,
                     gen_atts_in_D=gen_atts_in_D,
                     no_atts_in_D=no_atts_in_D,
                     D_nf_scale=D_nf_scale)
        I = EasyDict()
        I_info = EasyDict()
        desc = 'vc2_info_gan_net'
    elif model_type == 'vc2_info_gan2':  # Independent branch version InfoGAN
        G = EasyDict(func_name='training.vc_networks2.G_main_vc2',
                     synthesis_func='G_synthesis_modular_vc2',
                     fmap_min=fmap_min,
                     fmap_max=fmap_max,
                     fmap_decay=fmap_decay,
                     latent_size=count_dlatent_size,
                     dlatent_size=count_dlatent_size,
                     D_global_size=D_global_size,
                     module_list=module_list,
                     use_noise=True,
                     return_atts=return_atts,
                     G_nf_scale=G_nf_scale)  # Options for generator network.
        I = EasyDict(func_name='training.vc_networks2.vc2_head_infogan2',
                     dlatent_size=count_dlatent_size,
                     D_global_size=D_global_size,
                     fmap_min=fmap_min,
                     fmap_max=fmap_max)
        D = EasyDict(func_name='training.networks_stylegan2.D_stylegan2',
                     fmap_min=fmap_min,
                     fmap_max=fmap_max)  # Options for discriminator network.
        I_info = EasyDict()
        desc = 'vc2_info_gan2_net'
    elif model_type == 'vc2_gan':  # Standard VP-GAN
        G = EasyDict(func_name='training.vc_networks2.G_main_vc2',
                     synthesis_func='G_synthesis_modular_vc2',
                     fmap_min=fmap_min,
                     fmap_max=fmap_max,
                     fmap_decay=fmap_decay,
                     latent_size=count_dlatent_size,
                     dlatent_size=count_dlatent_size,
                     D_global_size=D_global_size,
                     module_list=module_list,
                     use_noise=True,
                     return_atts=return_atts,
                     G_nf_scale=G_nf_scale)  # Options for generator network.
        I = EasyDict(func_name='training.vc_networks2.vc2_head',
                     dlatent_size=count_dlatent_size,
                     D_global_size=D_global_size,
                     fmap_min=fmap_min,
                     fmap_max=fmap_max,
                     connect_mode=connect_mode)
        D = EasyDict(func_name='training.networks_stylegan2.D_stylegan2',
                     fmap_min=fmap_min,
                     fmap_max=fmap_max)  # Options for discriminator network.
        I_info = EasyDict()
        desc = 'vc2_gan'
    elif model_type == 'vc2_gan_byvae':  # COMA-FAIN
        G = EasyDict(
            func_name='training.vc_networks2.G_main_vc2',
            synthesis_func='G_synthesis_modular_vc2',
            fmap_min=fmap_min,
            fmap_max=fmap_max,
            fmap_decay=fmap_decay,
            latent_size=count_dlatent_size,
            dlatent_size=count_dlatent_size,
            D_global_size=D_global_size,
            module_list=module_list,
            use_noise=True,
            return_atts=return_atts,
            G_nf_scale=G_nf_scale,
            architecture=arch,
            drop_extra_torgb=drop_extra_torgb,
            latent_split_ls_for_std_gen=latent_split_ls_for_std_gen,
        )  # Options for generator network.
        I = EasyDict(func_name='training.vc_networks2.vc2_head_byvae',
                     dlatent_size=count_dlatent_size,
                     D_global_size=D_global_size,
                     fmap_min=fmap_min,
                     fmap_max=fmap_max,
                     connect_mode=connect_mode)
        D = EasyDict(func_name='training.networks_stylegan2.D_stylegan2',
                     fmap_min=fmap_min,
                     fmap_max=fmap_max)  # Options for discriminator network.
        I_info = EasyDict()
        desc = 'vc2_gan_byvae'
    elif model_type == 'vc2_gan_byvae_simple':  # COMA-FAIN-simple
        G = EasyDict(
            func_name='training.vc_networks2.G_main_vc2',
            synthesis_func='G_synthesis_simple_vc2',
            fmap_min=fmap_min,
            fmap_max=fmap_max,
            fmap_decay=fmap_decay,
            latent_size=count_dlatent_size,
            dlatent_size=count_dlatent_size,
            D_global_size=D_global_size,
            module_list=module_list,
            use_noise=True,
            return_atts=return_atts,
            G_nf_scale=G_nf_scale,
            architecture=arch,
            drop_extra_torgb=drop_extra_torgb,
            latent_split_ls_for_std_gen=latent_split_ls_for_std_gen,
        )  # Options for generator network.
        I = EasyDict(func_name='training.vc_networks2.I_byvae_simple',
                     dlatent_size=count_dlatent_size,
                     D_global_size=D_global_size,
                     fmap_min=fmap_min,
                     fmap_max=fmap_max,
                     connect_mode=connect_mode)
        D = EasyDict(func_name='training.vc_networks2.D_stylegan2_simple',
                     fmap_min=fmap_min,
                     fmap_max=fmap_max)  # Options for discriminator network.
        I_info = EasyDict()
        desc = 'vc2_gan_byvae_simple'
    elif model_type == 'vc2_gan_style2_noI':  # Just Style2-style GAN
        G = EasyDict(func_name='training.vc_networks2.G_main_vc2',
                     synthesis_func='G_synthesis_stylegan2_vc2',
                     fmap_min=fmap_min,
                     fmap_max=fmap_max,
                     fmap_decay=fmap_decay,
                     latent_size=dlatent_size,
                     architecture=arch,
                     dlatent_size=count_dlatent_size,
                     use_noise=True,
                     return_atts=return_atts,
                     G_nf_scale=G_nf_scale)  # Options for generator network.
        I = EasyDict()
        D = EasyDict(func_name='training.networks_stylegan2.D_stylegan2',
                     fmap_min=fmap_min,
                     fmap_max=fmap_max)  # Options for discriminator network.
        I_info = EasyDict()
        desc = 'vc2_gan_style2_noI'
    elif model_type == 'vc2_gan_own_I':  # Standard VP-GAN with own I
        G = EasyDict(func_name='training.vc_networks2.G_main_vc2',
                     synthesis_func='G_synthesis_modular_vc2',
                     fmap_min=fmap_min,
                     fmap_max=fmap_max,
                     fmap_decay=fmap_decay,
                     latent_size=count_dlatent_size,
                     dlatent_size=count_dlatent_size,
                     D_global_size=D_global_size,
                     module_list=module_list,
                     use_noise=True,
                     return_atts=return_atts,
                     G_nf_scale=G_nf_scale)  # Options for generator network.
        I = EasyDict(func_name='training.vc_networks2.I_modular_vc2',
                     dlatent_size=count_dlatent_I_size,
                     D_global_size=D_global_I_size,
                     fmap_min=fmap_min,
                     fmap_max=fmap_max,
                     connect_mode=connect_mode,
                     module_I_list=module_I_list,
                     I_nf_scale=I_nf_scale)
        D = EasyDict(func_name='training.networks_stylegan2.D_stylegan2',
                     fmap_min=fmap_min,
                     fmap_max=fmap_max)  # Options for discriminator network.
        I_info = EasyDict()
        desc = 'vc2_gan_own_I'
    elif model_type == 'vc2_gan_own_ID':  # Standard VP-GAN with own ID
        G = EasyDict(func_name='training.vc_networks2.G_main_vc2',
                     synthesis_func='G_synthesis_modular_vc2',
                     fmap_min=fmap_min,
                     fmap_max=fmap_max,
                     fmap_decay=fmap_decay,
                     latent_size=count_dlatent_size,
                     dlatent_size=count_dlatent_size,
                     D_global_size=D_global_size,
                     module_list=module_list,
                     use_noise=True,
                     return_atts=return_atts,
                     G_nf_scale=G_nf_scale)  # Options for generator network.
        I = EasyDict(func_name='training.vc_networks2.I_modular_vc2',
                     dlatent_size=count_dlatent_I_size,
                     D_global_size=D_global_I_size,
                     fmap_min=fmap_min,
                     fmap_max=fmap_max,
                     connect_mode=connect_mode,
                     module_I_list=module_I_list,
                     I_nf_scale=I_nf_scale)
        D = EasyDict(func_name='training.vc_networks2.D_modular_vc2',
                     dlatent_size=count_dlatent_D_size,
                     D_global_size=D_global_D_size,
                     fmap_min=fmap_min,
                     fmap_max=fmap_max,
                     connect_mode=connect_mode,
                     module_D_list=module_D_list,
                     D_nf_scale=D_nf_scale)
        I_info = EasyDict()
        desc = 'vc2_gan_ownID'
    elif model_type == 'vc2_gan_noI' or model_type == 'vc2_traversal_contrastive' or \
        model_type == 'gan_regW': # Just modular GAN or traversal contrastive or regW
        G = EasyDict(func_name='training.vc_networks2.G_main_vc2',
                     synthesis_func='G_synthesis_modular_vc2',
                     fmap_min=fmap_min,
                     fmap_max=fmap_max,
                     fmap_decay=fmap_decay,
                     latent_size=count_dlatent_size,
                     dlatent_size=count_dlatent_size,
                     D_global_size=D_global_size,
                     module_list=module_list,
                     use_noise=True,
                     return_atts=return_atts,
                     G_nf_scale=G_nf_scale)  # Options for generator network.
        I = EasyDict()
        D = EasyDict(func_name='training.networks_stylegan2.D_stylegan2',
                     fmap_min=fmap_min,
                     fmap_max=fmap_max)  # Options for discriminator network.
        I_info = EasyDict()
        desc = model_type
    else:
        raise ValueError('Not supported model tyle: ' + model_type)

    G_opt = EasyDict(beta1=0.0, beta2=0.99,
                     epsilon=1e-8)  # Options for generator optimizer.
    D_opt = EasyDict(beta1=0.0, beta2=0.99,
                     epsilon=1e-8)  # Options for discriminator optimizer.
    if model_type == 'vc2_info_gan':  # G1 and G2 version InfoGAN
        G_loss = EasyDict(
            func_name='training.loss_vc2.G_logistic_ns_vc2_info_gan',
            D_global_size=D_global_size,
            C_lambda=C_lambda,
            epsilon=epsilon_loss,
            random_eps=random_eps,
            latent_type=latent_type,
            delta_type=delta_type,
            outlier_detector=outlier_detector,
            gen_atts_in_D=gen_atts_in_D,
            att_lambda=att_lambda)  # Options for generator loss.
        D_loss = EasyDict(
            func_name='training.loss_vc2.D_logistic_r1_vc2_info_gan',
            D_global_size=D_global_size,
            latent_type=latent_type)  # Options for discriminator loss.
    elif model_type == 'vc2_info_gan2':  # Independent branch version InfoGAN
        G_loss = EasyDict(
            func_name='training.loss_vc2.G_logistic_ns_vc2_info_gan2',
            D_global_size=D_global_size,
            C_lambda=C_lambda,
            latent_type=latent_type,
            norm_ord=norm_ord,
            n_dim_strict=n_dim_strict,
            loose_rate=loose_rate)  # Options for generator loss.
        D_loss = EasyDict(
            func_name='training.loss_vc2.D_logistic_r1_vc2_info_gan2',
            D_global_size=D_global_size,
            latent_type=latent_type)  # Options for discriminator loss.
    elif model_type == 'vc2_gan':  # Standard VP-GAN
        G_loss = EasyDict(func_name='training.loss_vc2.G_logistic_ns_vc2',
                          D_global_size=D_global_size,
                          C_lambda=C_lambda,
                          epsilon=epsilon_loss,
                          random_eps=random_eps,
                          latent_type=latent_type,
                          delta_type=delta_type)  # Options for generator loss.
        D_loss = EasyDict(
            func_name='training.loss_vc2.D_logistic_r1_vc2',
            D_global_size=D_global_size,
            latent_type=latent_type)  # Options for discriminator loss.
    elif model_type == 'vc2_gan_byvae' or model_type == 'vc2_gan_byvae_simple':  # COMA-FAIN
        G_loss = EasyDict(
            func_name='training.loss_vc2.G_logistic_byvae_ns_vc2',
            D_global_size=D_global_size,
            C_lambda=C_lambda,
            epsilon=epsilon_loss,
            random_eps=random_eps,
            latent_type=latent_type,
            use_cascade=use_cascade,
            delta_type=delta_type)  # Options for generator loss.
        D_loss = EasyDict(
            func_name='training.loss_vc2.D_logistic_r1_vc2',
            D_global_size=D_global_size,
            latent_type=latent_type)  # Options for discriminator loss.
    elif model_type == 'vc2_gan_own_I' or model_type == 'vc2_gan_own_ID':  # Standard VP-GAN with own I or D
        G_loss = EasyDict(func_name='training.loss_vc2.G_logistic_ns_vc2',
                          D_global_size=D_global_size,
                          C_lambda=C_lambda,
                          epsilon=epsilon_loss,
                          random_eps=random_eps,
                          latent_type=latent_type,
                          delta_type=delta_type,
                          own_I=True)  # Options for generator loss.
        D_loss = EasyDict(
            func_name='training.loss_vc2.D_logistic_r1_vc2',
            D_global_size=D_global_size,
            latent_type=latent_type)  # Options for discriminator loss.
    elif model_type == 'vc2_gan_noI' or model_type == 'vc2_gan_style2_noI':  # Just GANs (modular or StyleGAN2-style)
        G_loss = EasyDict(
            func_name='training.loss_vc2.G_logistic_ns',
            latent_type=latent_type)  # Options for generator loss.
        D_loss = EasyDict(
            func_name='training.loss_vc2.D_logistic_r1_vc2',
            D_global_size=D_global_size,
            latent_type=latent_type)  # Options for discriminator loss.
    elif model_type == 'vc2_traversal_contrastive':  # With perceptual distance as guide.
        G_loss = EasyDict(
            func_name=
            'training.loss_vc2.G_logistic_ns_vc2_traversal_contrastive',
            D_global_size=D_global_size,
            C_lambda=C_lambda,
            n_neg_samples=n_neg_samples,
            temperature=temperature,
            epsilon=epsilon_loss,
            random_eps=random_eps,
            latent_type=latent_type,
            delta_type=delta_type)  # Options for generator loss.
        D_loss = EasyDict(
            func_name='training.loss_vc2.D_logistic_r1_vc2',
            D_global_size=D_global_size,
            latent_type=latent_type)  # Options for discriminator loss.
    elif model_type == 'gan_regW':
        G_loss = EasyDict(
            func_name='training.loss_vc2.G_logistic_ns_regW',
            latent_type=latent_type,
            regW_lambda=regW_lambda)  # Options for generator loss.
        D_loss = EasyDict(
            func_name='training.loss_vc2.D_logistic_r1_vc2',
            D_global_size=D_global_size,
            latent_type=latent_type)  # Options for discriminator loss.

    sched = EasyDict()  # Options for TrainingSchedule.
    grid = EasyDict(
        size='1080p',
        layout='random')  # Options for setup_snapshot_image_grid().
    sc = dnnlib.SubmitConfig()  # Options for dnnlib.submit_run().
    # tf_config = {'rnd.np_random_seed': 1000}  # Options for tflib.init_tf().
    tf_config = {
        'rnd.np_random_seed': random_seed
    }  # Options for tflib.init_tf().

    train.data_dir = data_dir
    train.total_kimg = total_kimg
    train.mirror_augment = mirror_augment
    train.image_snapshot_ticks = train.network_snapshot_ticks = 10
    # sched.G_lrate_base = sched.D_lrate_base = 0.002
    sched.G_lrate_base = sched.D_lrate_base = learning_rate
    sched.minibatch_size_base = batch_size
    sched.minibatch_gpu_base = batch_per_gpu
    D_loss.gamma = 10
    metrics = [metric_defaults[x] for x in metrics]

    desc += '-' + dataset
    dataset_args = EasyDict(tfrecord_dir=dataset, max_label_size='full')

    assert num_gpus in [1, 2, 4, 8]
    sc.num_gpus = num_gpus
    desc += '-%dgpu' % num_gpus
    desc += '-' + config_id

    # Configs A-E: Shrink networks to match original StyleGAN.
    # I.fmap_base = 2 << 8
    # G.fmap_base = 2 << 8
    # D.fmap_base = 2 << 9
    I.fmap_base = 2 << I_fmap_base
    G.fmap_base = 2 << G_fmap_base
    D.fmap_base = 2 << D_fmap_base

    # Config E: Set gamma to 100 and override G & D architecture.
    # D_loss.gamma = 100

    if gamma is not None:
        D_loss.gamma = gamma

    sc.submit_target = dnnlib.SubmitTarget.LOCAL
    sc.local.do_not_copy_source_files = True
    kwargs = EasyDict(train)
    kwargs.update(
        G_args=G,
        D_args=D,
        I_args=I,
        I_info_args=I_info,
        G_opt_args=G_opt,
        D_opt_args=D_opt,
        G_loss_args=G_loss,
        D_loss_args=D_loss,
        use_info_gan=(
            model_type == 'vc2_info_gan2'),  # Independent branch version
        use_vc_head=(model_type == 'vc2_gan' or model_type == 'vc2_gan_own_I'
                     or model_type == 'vc2_gan_own_ID'
                     or model_type == 'vc2_gan_byvae'
                     or model_type == 'vc2_gan_byvae_simple'),
        use_vc2_info_gan=(model_type == 'vc2_info_gan'),  # G1 and G2 version
        use_perdis=(model_type == 'vc2_traversal_contrastive'),
        avg_mv_for_I=avg_mv_for_I,
        traversal_grid=True,
        return_atts=return_atts)
    n_continuous = 0
    if not (module_list is None):
        for i, key in enumerate(key_ls):
            m_name = key.split('-')[0]
            if (m_name in LATENT_MODULES) and (not m_name == 'D_global'):
                n_continuous += size_ls[i]
    else:
        n_continuous = dlatent_size

    kwargs.update(dataset_args=dataset_args,
                  sched_args=sched,
                  grid_args=grid,
                  metric_arg_list=metrics,
                  tf_config=tf_config,
                  resume_pkl=resume_pkl,
                  n_discrete=D_global_size,
                  n_continuous=n_continuous,
                  n_samples_per=n_samples_per,
                  topk_dims_to_show=topk_dims_to_show,
                  cascade_alt_freq_k=cascade_alt_freq_k,
                  network_snapshot_ticks=network_snapshot_ticks)
    kwargs.submit_config = copy.deepcopy(sc)
    kwargs.submit_config.run_dir_root = result_dir
    kwargs.submit_config.run_desc = desc
    dnnlib.submit_run(**kwargs)
Esempio n. 10
0
def run(dataset, data_dir, result_dir, config_id, num_gpus, total_kimg, gamma, mirror_augment, metrics):
    train     = EasyDict(run_func_name='training.training_loop.training_loop_mirror_v6_remove_half_fl_fr.training_loop')
    G         = EasyDict(func_name='training.networks.networks_stylegan2.G_main')
    D         = EasyDict(func_name='training.networks.networks_stylegan2_discriminator_new_rotation.D_stylegan2_new_rotaion')  # Options for discriminator network.
    G_opt     = EasyDict(beta1=0.0, beta2=0.99, epsilon=1e-8)
    D_opt     = EasyDict(beta1=0.0, beta2=0.99, epsilon=1e-8)
    G_loss    = EasyDict(func_name='training.loss.loss_G_new_rotation_squared_euclidean_10_interpolate_50_percent_uniform_dist_int_penalty.G_logistic_ns_pathreg')
    D_loss    = EasyDict(func_name='training.loss.loss_D_logistic_r1_new_rotation_euclidean_square.D_logistic_r1_new_rotation')
    sched     = EasyDict()
    grid      = EasyDict(size='1080p', layout='random')
    sc        = dnnlib.SubmitConfig()
    tf_config = {'rnd.np_random_seed': 1000}

    train.data_dir = data_dir
    train.total_kimg = total_kimg
    train.mirror_augment = mirror_augment
    train.image_snapshot_ticks = train.network_snapshot_ticks = 10
    sched.G_lrate_base = sched.D_lrate_base = 0.002
    sched.minibatch_size_base = 32
    sched.minibatch_gpu_base = 4

    # train.resume_pkl = './results/00200-stylegan2-car_labels_v7_oversample_filter-2gpu-config-f-squared_euclidean_10_interpolate_50_percent_int_reg-256/network-snapshot-000887.pkl'
    # train.resume_kimg = 887.2

    D_loss.gamma = 10
    metrics = [metric_defaults[x] for x in metrics]
    desc = 'stylegan2'
    G.style_mixing_prob = None


    desc += '-' + dataset
    dataset_args = EasyDict(tfrecord_dir=dataset)

    assert num_gpus in [1, 2, 4, 8]
    sc.num_gpus = num_gpus
    desc += '-%dgpu' % num_gpus

    assert config_id in _valid_configs
    desc += '-' + config_id
    desc += '-squared_euclidean_10_interpolate_50_percent_int_reg_remove_half_fl_fr_no_noise_square'
    desc += '-256'

    # Configs A-E: Shrink networks to match original StyleGAN.
    if config_id != 'config-f':
        G.fmap_base = D.fmap_base = 8 << 10

    # Config E: Set gamma to 100 and override G & D architecture.
    if config_id.startswith('config-e'):
        D_loss.gamma = 100
        if 'Gorig'   in config_id: G.architecture = 'orig'
        if 'Gskip'   in config_id: G.architecture = 'skip' # (default)
        if 'Gresnet' in config_id: G.architecture = 'resnet'
        if 'Dorig'   in config_id: D.architecture = 'orig'
        if 'Dskip'   in config_id: D.architecture = 'skip'
        if 'Dresnet' in config_id: D.architecture = 'resnet' # (default)

    # Configs A-D: Enable progressive growing and switch to networks that support it.
    if config_id in ['config-a', 'config-b', 'config-c', 'config-d']:
        sched.lod_initial_resolution = 8
        sched.G_lrate_base = sched.D_lrate_base = 0.001
        sched.G_lrate_dict = sched.D_lrate_dict = {128: 0.0015, 256: 0.002, 512: 0.003, 1024: 0.003}
        sched.minibatch_size_base = 32 # (default)
        sched.minibatch_size_dict = {8: 256, 16: 128, 32: 64, 64: 32}
        sched.minibatch_gpu_base = 4 # (default)
        sched.minibatch_gpu_dict = {8: 32, 16: 16, 32: 8, 64: 4}
        G.synthesis_func = 'G_synthesis_stylegan_revised'
        D.func_name = 'training.networks_stylegan2.D_stylegan'

    # Configs A-C: Disable path length regularization.
    if config_id in ['config-a', 'config-b', 'config-c']:
        G_loss = EasyDict(func_name='training.loss.G_logistic_ns')

    # Configs A-B: Disable lazy regularization.
    if config_id in ['config-a', 'config-b']:
        train.lazy_regularization = False

    # Config A: Switch to original StyleGAN networks.
    if config_id == 'config-a':
        G = EasyDict(func_name='training.networks_stylegan.G_style')
        D = EasyDict(func_name='training.networks_stylegan.D_basic')

    if gamma is not None:
        D_loss.gamma = gamma

    sc.submit_target = dnnlib.SubmitTarget.LOCAL
    sc.local.do_not_copy_source_files = True
    kwargs = EasyDict(train)
    kwargs.update(G_args=G, D_args=D, G_opt_args=G_opt, D_opt_args=D_opt, G_loss_args=G_loss, D_loss_args=D_loss)
    kwargs.update(dataset_args=dataset_args, sched_args=sched, grid_args=grid, metric_arg_list=metrics, tf_config=tf_config)
    kwargs.submit_config = copy.deepcopy(sc)
    kwargs.submit_config.run_dir_root = result_dir
    kwargs.submit_config.run_desc = desc
    dnnlib.submit_run(**kwargs)
Esempio n. 11
0
def run(dataset, data_dir, result_dir, config_id, num_gpus, total_kimg, gamma,
        mirror_augment, metrics):
    train = EasyDict(run_func_name='training.training_loop.training_loop'
                     )  # Options for training loop.
    G = EasyDict(func_name='training.networks_stylegan2.G_main'
                 )  # Options for generator network.
    D = EasyDict(func_name='training.networks_stylegan2.D_stylegan2'
                 )  # Options for discriminator network.
    G_opt = EasyDict(beta1=0.0, beta2=0.99,
                     epsilon=1e-8)  # Options for generator optimizer.
    D_opt = EasyDict(beta1=0.0, beta2=0.99,
                     epsilon=1e-8)  # Options for discriminator optimizer.
    G_loss = EasyDict(func_name='training.loss.G_logistic_ns_pathreg'
                      )  # Options for generator loss.
    D_loss = EasyDict(func_name='training.loss.D_logistic_r1'
                      )  # Options for discriminator loss.
    sched = EasyDict()  # Options for TrainingSchedule.
    grid = EasyDict(
        size='8k', layout='random')  # Options for setup_snapshot_image_grid().
    sc = dnnlib.SubmitConfig()  # Options for dnnlib.submit_run().
    tf_config = {'rnd.np_random_seed': 1000}  # Options for tflib.init_tf().

    train.data_dir = data_dir
    train.total_kimg = total_kimg
    train.mirror_augment = mirror_augment
    train.image_snapshot_ticks = train.network_snapshot_ticks = 10
    sched.G_lrate_base = sched.D_lrate_base = 0.002
    sched.minibatch_size_base = 32
    sched.minibatch_gpu_base = 4
    D_loss.gamma = 10
    metrics = [metric_defaults[x] for x in metrics]
    desc = 'stylegan2'

    desc += '-' + dataset
    dataset_args = EasyDict(tfrecord_dir=dataset)

    assert num_gpus in [1, 2, 4, 8]
    sc.num_gpus = num_gpus
    desc += '-%dgpu' % num_gpus

    assert config_id in _valid_configs
    desc += '-' + config_id

    # Configs A-E: Shrink networks to match original StyleGAN.
    if config_id not in ['config-f', 'config-l']:
        G.fmap_base = D.fmap_base = 8 << 10

    # Config L: Generator training only
    if config_id == 'config-l':
        # Use labels as latent vector input
        dataset_args.max_label_size = "full"
        # Deactivate methods specific for GAN training
        G.truncation_psi = None
        G.randomize_noise = False
        G.style_mixing_prob = None
        G.dlatent_avg_beta = None
        G.conditional_labels = False
        # Refinement training
        G_loss.func_name = 'training.loss.G_reconstruction'
        train.run_func_name = 'training.training_loop.training_loop_refinement'
        # G.freeze_layers = ["mapping", "noise"]#, "4x4", "8x8", "16x16", "32x32"]
        # Network for refinement
        train.resume_pkl = "nets/stylegan2-ffhq-config-f.pkl"  # TODO init net
        train.resume_with_new_nets = True
        # Maintenance tasks
        sched.tick_kimg_base = 1  # 1 tick = 5000 images (metric update)
        sched.tick_kimg_dict = {}
        train.image_snapshot_ticks = 5  # Save every 5000 images
        train.network_snapshot_ticks = 10  # Save every 10000 images
        # Training parameters
        sched.G_lrate_base = 1e-4
        train.G_smoothing_kimg = 0.0
        sched.minibatch_size_base = sched.minibatch_gpu_base * num_gpus  # 4 per GPU

    # Config E: Set gamma to 100 and override G & D architecture.
    if config_id.startswith('config-e'):
        D_loss.gamma = 100
        if 'Gorig' in config_id: G.architecture = 'orig'
        if 'Gskip' in config_id: G.architecture = 'skip'  # (default)
        if 'Gresnet' in config_id: G.architecture = 'resnet'
        if 'Dorig' in config_id: D.architecture = 'orig'
        if 'Dskip' in config_id: D.architecture = 'skip'
        if 'Dresnet' in config_id: D.architecture = 'resnet'  # (default)

    # Configs A-D: Enable progressive growing and switch to networks that support it.
    if config_id in ['config-a', 'config-b', 'config-c', 'config-d']:
        sched.lod_initial_resolution = 8
        sched.G_lrate_base = sched.D_lrate_base = 0.001
        sched.G_lrate_dict = sched.D_lrate_dict = {
            128: 0.0015,
            256: 0.002,
            512: 0.003,
            1024: 0.003
        }
        sched.minibatch_size_base = 32  # (default)
        sched.minibatch_size_dict = {8: 256, 16: 128, 32: 64, 64: 32}
        sched.minibatch_gpu_base = 4  # (default)
        sched.minibatch_gpu_dict = {8: 32, 16: 16, 32: 8, 64: 4}
        G.synthesis_func = 'G_synthesis_stylegan_revised'
        D.func_name = 'training.networks_stylegan2.D_stylegan'

    # Configs A-C: Disable path length regularization.
    if config_id in ['config-a', 'config-b', 'config-c']:
        G_loss = EasyDict(func_name='training.loss.G_logistic_ns')

    # Configs A-B: Disable lazy regularization.
    if config_id in ['config-a', 'config-b']:
        train.lazy_regularization = False

    # Config A: Switch to original StyleGAN networks.
    if config_id == 'config-a':
        G = EasyDict(func_name='training.networks_stylegan.G_style')
        D = EasyDict(func_name='training.networks_stylegan.D_basic')

    if gamma is not None:
        D_loss.gamma = gamma

    sc.submit_target = dnnlib.SubmitTarget.LOCAL
    sc.local.do_not_copy_source_files = True
    kwargs = EasyDict(train)
    kwargs.update(G_args=G,
                  D_args=D,
                  G_opt_args=G_opt,
                  D_opt_args=D_opt,
                  G_loss_args=G_loss,
                  D_loss_args=D_loss)
    kwargs.update(dataset_args=dataset_args,
                  sched_args=sched,
                  grid_args=grid,
                  metric_arg_list=metrics,
                  tf_config=tf_config)
    kwargs.submit_config = copy.deepcopy(sc)
    kwargs.submit_config.run_dir_root = result_dir
    kwargs.submit_config.run_desc = desc
    dnnlib.submit_run(**kwargs)
Esempio n. 12
0
def run(
    dataset,
    data_dir,
    result_dir,
    config_id,
    num_gpus,
    total_kimg,
    gamma,
    mirror_augment,
    metrics,
    resume_pkl=None,
    resume_kimg=None,
):
    train = EasyDict(
        run_func_name="training.training_loop.training_loop",
        # training resume options:
        resume_pkl=
        resume_pkl,  # Network pickle to resume training from, None = train from scratch.
        resume_kimg=
        resume_kimg,  # Assumed training progress at the beginning. Affects reporting and training schedule.
    )  # Options for training loop.
    G = EasyDict(func_name="training.networks_stylegan2.G_main"
                 )  # Options for generator network.
    D = EasyDict(func_name="training.networks_stylegan2.D_stylegan2"
                 )  # Options for discriminator network.
    G_opt = EasyDict(beta1=0.0, beta2=0.99,
                     epsilon=1e-8)  # Options for generator optimizer.
    D_opt = EasyDict(beta1=0.0, beta2=0.99,
                     epsilon=1e-8)  # Options for discriminator optimizer.
    G_loss = EasyDict(func_name="training.loss.G_logistic_ns_pathreg"
                      )  # Options for generator loss.
    D_loss = EasyDict(func_name="training.loss.D_logistic_r1"
                      )  # Options for discriminator loss.
    sched = EasyDict()  # Options for TrainingSchedule.
    grid = EasyDict(
        size="8k", layout="random")  # Options for setup_snapshot_image_grid().
    sc = dnnlib.SubmitConfig()  # Options for dnnlib.submit_run().
    tf_config = {"rnd.np_random_seed": 1000}  # Options for tflib.init_tf().

    train.data_dir = data_dir
    train.total_kimg = total_kimg
    train.mirror_augment = mirror_augment
    train.image_snapshot_ticks = train.network_snapshot_ticks = 10
    sched.G_lrate_base = sched.D_lrate_base = 0.002
    sched.minibatch_size_base = 32
    sched.minibatch_gpu_base = 4
    D_loss.gamma = 10
    metrics = [metric_defaults[x] for x in metrics]
    desc = "stylegan2"

    desc += "-" + dataset
    dataset_args = EasyDict(tfrecord_dir=dataset)

    assert num_gpus in [1, 2, 4, 8]
    sc.num_gpus = num_gpus
    desc += "-%dgpu" % num_gpus

    assert config_id in _valid_configs
    desc += "-" + config_id

    # Configs A-E: Shrink networks to match original StyleGAN.
    if config_id != "config-f":
        G.fmap_base = D.fmap_base = 8 << 10

    # Config E: Set gamma to 100 and override G & D architecture.
    if config_id.startswith("config-e"):
        D_loss.gamma = 100
        if "Gorig" in config_id:
            G.architecture = "orig"
        if "Gskip" in config_id:
            G.architecture = "skip"  # (default)
        if "Gresnet" in config_id:
            G.architecture = "resnet"
        if "Dorig" in config_id:
            D.architecture = "orig"
        if "Dskip" in config_id:
            D.architecture = "skip"
        if "Dresnet" in config_id:
            D.architecture = "resnet"  # (default)

    # Configs A-D: Enable progressive growing and switch to networks that support it.
    if config_id in ["config-a", "config-b", "config-c", "config-d"]:
        sched.lod_initial_resolution = 8
        sched.G_lrate_base = sched.D_lrate_base = 0.001
        sched.G_lrate_dict = sched.D_lrate_dict = {
            128: 0.0015,
            256: 0.002,
            512: 0.003,
            1024: 0.003,
        }
        sched.minibatch_size_base = 32  # (default)
        sched.minibatch_size_dict = {8: 256, 16: 128, 32: 64, 64: 32}
        sched.minibatch_gpu_base = 4  # (default)
        sched.minibatch_gpu_dict = {8: 32, 16: 16, 32: 8, 64: 4}
        G.synthesis_func = "G_synthesis_stylegan_revised"
        D.func_name = "training.networks_stylegan2.D_stylegan"

    # Configs A-C: Disable path length regularization.
    if config_id in ["config-a", "config-b", "config-c"]:
        G_loss = EasyDict(func_name="training.loss.G_logistic_ns")

    # Configs A-B: Disable lazy regularization.
    if config_id in ["config-a", "config-b"]:
        train.lazy_regularization = False

    # Config A: Switch to original StyleGAN networks.
    if config_id == "config-a":
        G = EasyDict(func_name="training.networks_stylegan.G_style")
        D = EasyDict(func_name="training.networks_stylegan.D_basic")

    if gamma is not None:
        D_loss.gamma = gamma

    sc.submit_target = dnnlib.SubmitTarget.LOCAL
    sc.local.do_not_copy_source_files = True
    kwargs = EasyDict(train)
    kwargs.update(
        G_args=G,
        D_args=D,
        G_opt_args=G_opt,
        D_opt_args=D_opt,
        G_loss_args=G_loss,
        D_loss_args=D_loss,
    )
    kwargs.update(
        dataset_args=dataset_args,
        sched_args=sched,
        grid_args=grid,
        metric_arg_list=metrics,
        tf_config=tf_config,
    )
    kwargs.submit_config = copy.deepcopy(sc)
    kwargs.submit_config.run_dir_root = result_dir
    kwargs.submit_config.run_desc = desc
    dnnlib.submit_run(**kwargs)
Esempio n. 13
0
def run(dataset, data_dir, result_dir, config_id, num_gpus, total_kimg, gamma,
        mirror_augment, metrics, dlatent_size, lr, batch_size, decay_step,
        decay_rate, stair, tick_kimg):
    train = EasyDict(run_func_name='training.vae_training_loop.training_loop'
                     )  # Options for training loop.
    G = EasyDict(func_name='training.vae_dcgan.Decoder_main'
                 )  # Options for generator network.
    D = EasyDict(func_name='training.vae_dcgan.Encoder'
                 )  # Options for discriminator network.
    G_opt = EasyDict(beta1=0.0, beta2=0.99,
                     epsilon=1e-8)  # Options for generator optimizer.
    D_opt = EasyDict(beta1=0.0, beta2=0.99,
                     epsilon=1e-8)  # Options for discriminator optimizer.
    G_loss = EasyDict(func_name='training.loss.G_logistic_ns_pathreg'
                      )  # Options for generator loss.
    D_loss = EasyDict(
        func_name='training.loss.vae_loss')  # Options for discriminator loss.
    sched = EasyDict()  # Options for TrainingSchedule.
    grid = EasyDict(
        size='8k', layout='random')  # Options for setup_snapshot_image_grid().
    sc = dnnlib.SubmitConfig()  # Options for dnnlib.submit_run().
    tf_config = {'rnd.np_random_seed': 1000}  # Options for tflib.init_tf().

    train.data_dir = data_dir
    train.total_kimg = total_kimg
    train.mirror_augment = mirror_augment
    train.image_snapshot_ticks = train.network_snapshot_ticks = 10

    sched.batch_size = batch_size
    sched.lr = lr
    sched.decay_step = decay_step
    sched.decay_rate = decay_rate
    sched.stair = stair
    sched.tick_kimg = tick_kimg

    D_loss.gamma = 10
    metrics = [metric_defaults[x] for x in metrics]
    desc = 'vae_dcgan'

    G.dlatent_size = dlatent_size
    D.dlatent_size = dlatent_size
    G.num_units = D.num_units = 1024
    G.act = D.act = 'relu'

    desc += '-' + dataset
    dataset_args = EasyDict(tfrecord_dir=dataset)

    assert num_gpus in [1, 2, 4, 8]
    sc.num_gpus = num_gpus
    desc += '-%dgpu' % num_gpus

    assert config_id in _valid_configs
    desc += '-' + config_id

    if gamma is not None:
        D_loss.gamma = gamma

    sc.submit_target = dnnlib.SubmitTarget.LOCAL
    sc.local.do_not_copy_source_files = True
    kwargs = EasyDict(train)
    kwargs.update(G_args=G,
                  D_args=D,
                  G_opt_args=G_opt,
                  D_opt_args=D_opt,
                  G_loss_args=G_loss,
                  D_loss_args=D_loss)
    kwargs.update(dataset_args=dataset_args,
                  sched_args=sched,
                  grid_args=grid,
                  metric_arg_list=metrics,
                  tf_config=tf_config)
    kwargs.submit_config = copy.deepcopy(sc)
    kwargs.submit_config.run_dir_root = result_dir
    kwargs.submit_config.run_desc = desc
    dnnlib.submit_run(**kwargs)
Esempio n. 14
0
def run(dataset,
        data_dir,
        result_dir,
        config_id,
        num_gpus,
        total_kimg,
        gamma,
        mirror_augment,
        metrics,
        resume_pkl,
        I_fmap_base=8,
        G_fmap_base=8,
        D_fmap_base=9,
        fmap_decay=0.15,
        D_lambda=0,
        C_lambda=1,
        n_samples_per=10,
        module_list=None,
        model_type='vc_gan2',
        epsilon_loss=3,
        random_eps=False,
        latent_type='uniform',
        delta_type='onedim',
        connect_mode='concat',
        batch_size=32,
        batch_per_gpu=16,
        return_atts=False,
        random_seed=1000,
        module_I_list=None,
        module_D_list=None,
        fmap_min=16,
        fmap_max=512,
        G_nf_scale=4,
        I_nf_scale=4,
        D_nf_scale=4,
        return_I_atts=False,
        dlatent_size=24,
        arch='resnet',
        topk_dims_to_show=20):
    # print('module_list:', module_list)
    train = EasyDict(
        run_func_name='training.training_loop_vc2.training_loop_vc2'
    )  # Options for training loop.

    D_global_size = 0
    if not (module_list is None):
        module_list = _str_to_list(module_list)
        key_ls, size_ls, count_dlatent_size = split_module_names(module_list)
        for i, key in enumerate(key_ls):
            if key.startswith('D_global') or key.startswith('D_nocond_global'):
                D_global_size += size_ls[i]
    else:
        count_dlatent_size = dlatent_size

    if not (module_I_list is None):
        D_global_I_size = 0
        module_I_list = _str_to_list(module_I_list)
        key_I_ls, size_I_ls, count_dlatent_I_size = split_module_names(
            module_I_list)
        for i, key in enumerate(key_I_ls):
            if key.startswith('D_global') or key.startswith('D_nocond_global'):
                D_global_I_size += size_I_ls[i]

    if not (module_D_list is None):
        D_global_D_size = 0
        module_D_list = _str_to_list(module_D_list)
        key_D_ls, size_D_ls, count_dlatent_D_size = split_module_names(
            module_D_list)
        for i, key in enumerate(key_D_ls):
            if key.startswith('D_global') or key.startswith('D_nocond_global'):
                D_global_D_size += size_D_ls[i]

    if model_type == 'vc2_gan':  # Standard VP-GAN
        G = EasyDict(func_name='training.vc_networks2.G_main_vc2',
                     synthesis_func='G_synthesis_modular_vc2',
                     fmap_min=fmap_min,
                     fmap_max=fmap_max,
                     fmap_decay=fmap_decay,
                     latent_size=count_dlatent_size,
                     dlatent_size=count_dlatent_size,
                     D_global_size=D_global_size,
                     module_list=module_list,
                     use_noise=True,
                     return_atts=return_atts,
                     G_nf_scale=G_nf_scale)  # Options for generator network.
        I = EasyDict(func_name='training.vc_networks2.vc2_head',
                     dlatent_size=count_dlatent_size,
                     D_global_size=D_global_size,
                     fmap_min=fmap_min,
                     fmap_max=fmap_max,
                     connect_mode=connect_mode)
        D = EasyDict(func_name='training.networks_stylegan2.D_stylegan2',
                     fmap_min=fmap_min,
                     fmap_max=fmap_max)  # Options for discriminator network.
        I_info = EasyDict()
        desc = 'vc2_gan'
    elif model_type == 'vpex_gan':  # VP-GAN extended.
        G = EasyDict(func_name='training.vc_networks2.G_main_vc2',
                     synthesis_func='G_synthesis_modular_vc2',
                     fmap_min=fmap_min,
                     fmap_max=fmap_max,
                     fmap_decay=fmap_decay,
                     latent_size=count_dlatent_size,
                     dlatent_size=count_dlatent_size,
                     D_global_size=D_global_size,
                     module_list=module_list,
                     use_noise=True,
                     return_atts=return_atts,
                     G_nf_scale=G_nf_scale)  # Options for generator network.
        I = EasyDict(func_name='training.vpex_networks.vpex_net',
                     dlatent_size=count_dlatent_size,
                     D_global_size=D_global_size,
                     fmap_min=fmap_min,
                     fmap_max=fmap_max,
                     connect_mode=connect_mode,
                     return_atts=return_I_atts)
        D = EasyDict(func_name='training.networks_stylegan2.D_stylegan2',
                     fmap_min=fmap_min,
                     fmap_max=fmap_max)  # Options for discriminator network.
        I_info = EasyDict()
        desc = 'vpex_gan'
    elif model_type == 'vc2_gan_own_I':  # Standard VP-GAN with own I
        G = EasyDict(func_name='training.vc_networks2.G_main_vc2',
                     synthesis_func='G_synthesis_modular_vc2',
                     fmap_min=fmap_min,
                     fmap_max=fmap_max,
                     fmap_decay=fmap_decay,
                     latent_size=count_dlatent_size,
                     dlatent_size=count_dlatent_size,
                     D_global_size=D_global_size,
                     module_list=module_list,
                     use_noise=True,
                     return_atts=return_atts,
                     G_nf_scale=G_nf_scale)  # Options for generator network.
        I = EasyDict(func_name='training.vc_networks2.I_modular_vc2',
                     dlatent_size=count_dlatent_I_size,
                     D_global_size=D_global_I_size,
                     fmap_min=fmap_min,
                     fmap_max=fmap_max,
                     connect_mode=connect_mode,
                     module_I_list=module_I_list,
                     I_nf_scale=I_nf_scale)
        D = EasyDict(func_name='training.networks_stylegan2.D_stylegan2',
                     fmap_min=fmap_min,
                     fmap_max=fmap_max)  # Options for discriminator network.
        I_info = EasyDict()
        desc = 'vc2_gan_own_I'
    elif model_type == 'vc2_gan_own_ID':  # Standard VP-GAN with own ID
        G = EasyDict(func_name='training.vc_networks2.G_main_vc2',
                     synthesis_func='G_synthesis_modular_vc2',
                     fmap_min=fmap_min,
                     fmap_max=fmap_max,
                     fmap_decay=fmap_decay,
                     latent_size=count_dlatent_size,
                     dlatent_size=count_dlatent_size,
                     D_global_size=D_global_size,
                     module_list=module_list,
                     use_noise=True,
                     return_atts=return_atts,
                     G_nf_scale=G_nf_scale)  # Options for generator network.
        I = EasyDict(func_name='training.vc_networks2.I_modular_vc2',
                     dlatent_size=count_dlatent_I_size,
                     D_global_size=D_global_I_size,
                     fmap_min=fmap_min,
                     fmap_max=fmap_max,
                     connect_mode=connect_mode,
                     module_I_list=module_I_list,
                     I_nf_scale=I_nf_scale)
        D = EasyDict(func_name='training.vc_networks2.D_modular_vc2',
                     dlatent_size=count_dlatent_D_size,
                     D_global_size=D_global_D_size,
                     fmap_min=fmap_min,
                     fmap_max=fmap_max,
                     connect_mode=connect_mode,
                     module_D_list=module_D_list,
                     D_nf_scale=D_nf_scale)
        I_info = EasyDict()
        desc = 'vc2_gan_ownID'
    else:
        raise ValueError('Not supported model tyle: ' + model_type)

    G_opt = EasyDict(beta1=0.0, beta2=0.99,
                     epsilon=1e-8)  # Options for generator optimizer.
    D_opt = EasyDict(beta1=0.0, beta2=0.99,
                     epsilon=1e-8)  # Options for discriminator optimizer.
    if model_type == 'vc2_gan':  # Standard VP-GAN
        G_loss = EasyDict(func_name='training.loss_vc2.G_logistic_ns_vc2',
                          D_global_size=D_global_size,
                          C_lambda=C_lambda,
                          epsilon=epsilon_loss,
                          random_eps=random_eps,
                          latent_type=latent_type,
                          delta_type=delta_type)  # Options for generator loss.
        D_loss = EasyDict(
            func_name='training.loss_vc2.D_logistic_r1_vc2',
            D_global_size=D_global_size,
            latent_type=latent_type)  # Options for discriminator loss.
    elif model_type == 'vpex_gan':  # VP-GAN extended.
        G_loss = EasyDict(func_name='training.loss_vpex.G_logistic_ns_vpex',
                          D_global_size=D_global_size,
                          C_lambda=C_lambda,
                          epsilon=epsilon_loss,
                          random_eps=random_eps,
                          latent_type=latent_type,
                          delta_type=delta_type)  # Options for generator loss.
        D_loss = EasyDict(
            func_name='training.loss_vc2.D_logistic_r1_vc2',
            D_global_size=D_global_size,
            latent_type=latent_type)  # Options for discriminator loss.
    elif model_type == 'vc2_gan_own_I' or model_type == 'vc2_gan_own_ID':  # Standard VP-GAN with own I or D
        G_loss = EasyDict(func_name='training.loss_vc2.G_logistic_ns_vc2',
                          D_global_size=D_global_size,
                          C_lambda=C_lambda,
                          epsilon=epsilon_loss,
                          random_eps=random_eps,
                          latent_type=latent_type,
                          delta_type=delta_type,
                          own_I=True)  # Options for generator loss.
        D_loss = EasyDict(
            func_name='training.loss_vc2.D_logistic_r1_vc2',
            D_global_size=D_global_size,
            latent_type=latent_type)  # Options for discriminator loss.

    sched = EasyDict()  # Options for TrainingSchedule.
    grid = EasyDict(
        size='1080p',
        layout='random')  # Options for setup_snapshot_image_grid().
    sc = dnnlib.SubmitConfig()  # Options for dnnlib.submit_run().
    # tf_config = {'rnd.np_random_seed': 1000}  # Options for tflib.init_tf().
    tf_config = {
        'rnd.np_random_seed': random_seed
    }  # Options for tflib.init_tf().

    train.data_dir = data_dir
    train.total_kimg = total_kimg
    train.mirror_augment = mirror_augment
    train.image_snapshot_ticks = train.network_snapshot_ticks = 10
    sched.G_lrate_base = sched.D_lrate_base = 0.002
    sched.minibatch_size_base = batch_size
    sched.minibatch_gpu_base = batch_per_gpu
    D_loss.gamma = 10
    metrics = [metric_defaults[x] for x in metrics]

    desc += '-' + dataset
    dataset_args = EasyDict(tfrecord_dir=dataset, max_label_size='full')

    assert num_gpus in [1, 2, 4, 8]
    sc.num_gpus = num_gpus
    desc += '-%dgpu' % num_gpus
    desc += '-' + config_id

    # Configs A-E: Shrink networks to match original StyleGAN.
    I.fmap_base = 2 << I_fmap_base
    G.fmap_base = 2 << G_fmap_base
    D.fmap_base = 2 << D_fmap_base

    # Config E: Set gamma to 100 and override G & D architecture.
    # D_loss.gamma = 100

    if gamma is not None:
        D_loss.gamma = gamma

    sc.submit_target = dnnlib.SubmitTarget.LOCAL
    sc.local.do_not_copy_source_files = True
    kwargs = EasyDict(train)
    kwargs.update(
        G_args=G,
        D_args=D,
        I_args=I,
        I_info_args=I_info,
        G_opt_args=G_opt,
        D_opt_args=D_opt,
        G_loss_args=G_loss,
        D_loss_args=D_loss,
        use_info_gan=(
            model_type == 'vc2_info_gan2'),  # Independent branch version
        use_vc_head=(model_type == 'vc2_gan' or model_type == 'vpex_gan'
                     or model_type == 'vc2_gan_own_I'
                     or model_type == 'vc2_gan_own_ID'
                     or model_type == 'vc2_gan_byvae'),
        traversal_grid=True,
        return_atts=return_atts,
        return_I_atts=return_I_atts)
    n_continuous = 0
    if not (module_list is None):
        for i, key in enumerate(key_ls):
            m_name = key.split('-')[0]
            if (m_name in LATENT_MODULES) and (not m_name == 'D_global'):
                n_continuous += size_ls[i]
    else:
        n_continuous = dlatent_size

    kwargs.update(dataset_args=dataset_args,
                  sched_args=sched,
                  grid_args=grid,
                  metric_arg_list=metrics,
                  tf_config=tf_config,
                  resume_pkl=resume_pkl,
                  n_discrete=D_global_size,
                  n_continuous=n_continuous,
                  n_samples_per=n_samples_per,
                  topk_dims_to_show=topk_dims_to_show)
    kwargs.submit_config = copy.deepcopy(sc)
    kwargs.submit_config.run_dir_root = result_dir
    kwargs.submit_config.run_desc = desc
    dnnlib.submit_run(**kwargs)
Esempio n. 15
0
def run(dataset,
        data_dir,
        result_dir,
        config_id,
        num_gpus,
        total_kimg,
        gamma,
        mirror_augment,
        metrics,
        resume_run_id=None):
    train = EasyDict(run_func_name='training.training_loop.training_loop'
                     )  # Options for training loop.
    G = EasyDict(func_name='training.networks_stylegan2.G_main'
                 )  # Options for generator network.
    D = EasyDict(func_name='training.networks_stylegan2.D_stylegan2'
                 )  # Options for discriminator network.
    G_opt = EasyDict(beta1=0.0, beta2=0.99,
                     epsilon=1e-8)  # Options for generator optimizer.
    D_opt = EasyDict(beta1=0.0, beta2=0.99,
                     epsilon=1e-8)  # Options for discriminator optimizer.
    G_loss = EasyDict(func_name='training.loss.G_logistic_ns_pathreg'
                      )  # Options for generator loss.
    D_loss = EasyDict(func_name='training.loss.D_logistic_r1'
                      )  # Options for discriminator loss.
    sched = EasyDict()  # Options for TrainingSchedule.
    grid = EasyDict(
        size='8k', layout='random')  # Options for setup_snapshot_image_grid().
    sc = dnnlib.SubmitConfig()  # Options for dnnlib.submit_run().
    tf_config = {'rnd.np_random_seed': 1000}  # Options for tflib.init_tf().

    if resume_run_id is not None:
        # Resume from the ID of the results directory given
        ids = sorted(get_valid_runids(result_dir))

        if resume_run_id == 'recent':
            resume_run_id = ids[-1][0]
        else:
            try:
                resume_run_id = int(resume_run_id)
            except ValueError:
                raise RuntimeError(
                    '--resume argument is invalid (must be number, or "recent"): {}'
                    .format(resume_run_id))

        try:
            rundir_name = next(x[1] for x in ids if x[0] == resume_run_id)
        except StopIteration:
            raise RuntimeError(
                'Could not find results directory with run ID {} (options: {})'
                .format(resume_run_id, [x[0] for x in ids]))

        # Find kimg & pkl file
        rundir = os.path.join(result_dir, rundir_name)
        pkls = [
            name for name in os.listdir(rundir)
            if name.startswith('network-snapshot-') and name.endswith('.pkl')
        ]
        kimgs = sorted([(int(
            pkl.replace('network-snapshot-', '').replace('.pkl', '')), pkl)
                        for pkl in pkls],
                       key=lambda x: x[0])
        if len(kimgs) == 0:
            raise RuntimeError(
                'No network-snapshot-[0-9].pkl files found in {}'.format(
                    rundir))
        max_kimg = kimgs[-1][0]
        pkl_name = kimgs[-1][1]

        # Get wall clock time
        logfilepath = os.path.join(rundir, 'log.txt')
        with open(logfilepath, 'r') as f:
            logfile = f.read()
        for line in logfile.splitlines():
            if 'kimg {}'.format(max_kimg) in line:
                if 'time ' not in line:
                    raise RuntimeError(
                        'Invalid log file: {}'.format(logfilepath))
                line = line.split('time ')[1]
                if 'sec/tick' not in line:
                    raise RuntimeError(
                        'Invalid log file: {}'.format(logfilepath))
                line = line.split('sec/tick')[0].strip()
                # Parse d h m s, etc.
                total_seconds_formatted = line
                total_seconds = 0
                if 'd' in line:
                    arr = line.split('d')
                    days = int(arr[0].strip())
                    total_seconds += days * 24 * 60 * 60
                    line = arr[1]
                if 'h' in line:
                    arr = line.split('h')
                    hours = int(arr[0].strip())
                    total_seconds += hours * 60 * 60
                    line = arr[1]
                if 'm' in line:
                    arr = line.split('m')
                    mins = int(arr[0].strip())
                    total_seconds += mins * 60
                    line = arr[1]
                if 's' in line:
                    arr = line.split('s')
                    secs = int(arr[0].strip())
                    total_seconds += secs
                    line = arr[1]
                break

        # Set args for training
        train.resume_pkl = os.path.join(rundir, pkl_name)
        train.resume_kimg = max_kimg
        train.resume_time = total_seconds
        print('Resuming from run {}: kimg {}, time {}'.format(
            rundir_name, max_kimg, total_seconds_formatted))

    train.data_dir = data_dir
    train.total_kimg = total_kimg
    train.mirror_augment = mirror_augment
    train.image_snapshot_ticks = train.network_snapshot_ticks = 1
    sched.G_lrate_base = sched.D_lrate_base = 0.002
    sched.minibatch_size_base = 32
    sched.minibatch_gpu_base = 4
    D_loss.gamma = 10
    metrics = [metric_defaults[x] for x in metrics]
    desc = 'stylegan2'

    desc += '-' + dataset
    dataset_args = EasyDict(tfrecord_dir=dataset)

    assert num_gpus in [1, 2, 4, 8]
    sc.num_gpus = num_gpus
    desc += '-%dgpu' % num_gpus

    assert config_id in _valid_configs
    desc += '-' + config_id

    # Configs A-E: Shrink networks to match original StyleGAN.
    if config_id != 'config-f':
        G.fmap_base = D.fmap_base = 8 << 10

    # Config E: Set gamma to 100 and override G & D architecture.
    if config_id.startswith('config-e'):
        D_loss.gamma = 100
        if 'Gorig' in config_id: G.architecture = 'orig'
        if 'Gskip' in config_id: G.architecture = 'skip'  # (default)
        if 'Gresnet' in config_id: G.architecture = 'resnet'
        if 'Dorig' in config_id: D.architecture = 'orig'
        if 'Dskip' in config_id: D.architecture = 'skip'
        if 'Dresnet' in config_id: D.architecture = 'resnet'  # (default)

    # Configs A-D: Enable progressive growing and switch to networks that support it.
    if config_id in ['config-a', 'config-b', 'config-c', 'config-d']:
        sched.lod_initial_resolution = 8
        sched.G_lrate_base = sched.D_lrate_base = 0.001
        sched.G_lrate_dict = sched.D_lrate_dict = {
            128: 0.0015,
            256: 0.002,
            512: 0.003,
            1024: 0.003
        }
        sched.minibatch_size_base = 32  # (default)
        sched.minibatch_size_dict = {8: 256, 16: 128, 32: 64, 64: 32}
        sched.minibatch_gpu_base = 4  # (default)
        sched.minibatch_gpu_dict = {8: 32, 16: 16, 32: 8, 64: 4}
        G.synthesis_func = 'G_synthesis_stylegan_revised'
        D.func_name = 'training.networks_stylegan2.D_stylegan'

    # Configs A-C: Disable path length regularization.
    if config_id in ['config-a', 'config-b', 'config-c']:
        G_loss = EasyDict(func_name='training.loss.G_logistic_ns')

    # Configs A-B: Disable lazy regularization.
    if config_id in ['config-a', 'config-b']:
        train.lazy_regularization = False

    # Config A: Switch to original StyleGAN networks.
    if config_id == 'config-a':
        G = EasyDict(func_name='training.networks_stylegan.G_style')
        D = EasyDict(func_name='training.networks_stylegan.D_basic')

    if gamma is not None:
        D_loss.gamma = gamma

    sc.submit_target = dnnlib.SubmitTarget.LOCAL
    sc.local.do_not_copy_source_files = True
    kwargs = EasyDict(train)
    kwargs.update(G_args=G,
                  D_args=D,
                  G_opt_args=G_opt,
                  D_opt_args=D_opt,
                  G_loss_args=G_loss,
                  D_loss_args=D_loss)
    kwargs.update(dataset_args=dataset_args,
                  sched_args=sched,
                  grid_args=grid,
                  metric_arg_list=metrics,
                  tf_config=tf_config)
    kwargs.submit_config = copy.deepcopy(sc)
    kwargs.submit_config.run_dir_root = result_dir
    kwargs.submit_config.run_desc = desc
    dnnlib.submit_run(**kwargs)
Esempio n. 16
0
def run(dataset,
        data_dir,
        result_dir,
        num_gpus,
        total_kimg,
        gamma,
        mirror_augment,
        metrics,
        resume_pkl,
        I_fmap_base=8,
        G_fmap_base=8,
        D_fmap_base=9,
        fmap_decay=0.15,
        C_lambda=1,
        n_samples_per=10,
        module_list=None,
        model_type='gan_like',
        epsilon_loss=3,
        random_eps=False,
        latent_type='uniform',
        batch_size=32,
        batch_per_gpu=16,
        return_atts=False,
        random_seed=1000,
        module_I_list=None,
        module_D_list=None,
        fmap_min=16,
        fmap_max=512,
        G_nf_scale=4,
        norm_ord=2,
        topk_dims_to_show=20,
        learning_rate=0.002,
        avg_mv_for_I=False,
        use_cascade=False,
        cascade_alt_freq_k=1,
        post_trans_wh=16,
        post_trans_cnn_dim=128,
        dff=512,
        trans_rate=0.1,
        construct_feat_by_concat=False,
        ncut_maxval=5,
        post_trans_mat=16,
        group_recons_lambda=0,
        trans_dim=512,
        network_snapshot_ticks=10):
    train = EasyDict(
        run_func_name='training.training_loop_tsfm.training_loop_tsfm'
    )  # Options for training loop.

    if not (module_list is None):
        module_list = _str_to_list(module_list)
        key_ls, size_ls, count_dlatent_size = split_module_names(module_list)

    if model_type == 'info_gan_like':  # Independent branch version InfoGAN
        G = EasyDict(
            func_name='training.tsfm_G_nets.G_main_tsfm',
            synthesis_func='G_synthesis_modular_tsfm',
            fmap_min=fmap_min,
            fmap_max=fmap_max,
            fmap_decay=fmap_decay,
            latent_size=count_dlatent_size,
            dlatent_size=count_dlatent_size,
            module_list=module_list,
            use_noise=True,
            return_atts=return_atts,
            G_nf_scale=G_nf_scale,
            trans_dim=trans_dim,
            post_trans_wh=post_trans_wh,
            post_trans_cnn_dim=post_trans_cnn_dim,
            dff=dff,
            trans_rate=trans_rate,
            construct_feat_by_concat=construct_feat_by_concat,
            ncut_maxval=ncut_maxval,
            post_trans_mat=post_trans_mat,
        )  # Options for generator network.
        I = EasyDict(func_name='training.tsfm_I_nets.head_infogan2',
                     dlatent_size=count_dlatent_size,
                     fmap_min=fmap_min,
                     fmap_max=fmap_max)
        D = EasyDict(func_name='training.networks_stylegan2.D_stylegan2',
                     fmap_min=fmap_min,
                     fmap_max=fmap_max)  # Options for discriminator network.
        desc = 'info_gan_like'
    elif model_type == 'ps_sc_like':  # COMA-FAIN
        G = EasyDict(
            func_name='training.tsfm_G_nets.G_main_tsfm',
            synthesis_func='G_synthesis_modular_tsfm',
            fmap_min=fmap_min,
            fmap_max=fmap_max,
            fmap_decay=fmap_decay,
            latent_size=count_dlatent_size,
            dlatent_size=count_dlatent_size,
            module_list=module_list,
            use_noise=True,
            return_atts=return_atts,
            G_nf_scale=G_nf_scale,
            trans_dim=trans_dim,
            post_trans_wh=post_trans_wh,
            post_trans_cnn_dim=post_trans_cnn_dim,
            dff=dff,
            trans_rate=trans_rate,
            construct_feat_by_concat=construct_feat_by_concat,
            ncut_maxval=ncut_maxval,
            post_trans_mat=post_trans_mat,
        )  # Options for generator network.
        I = EasyDict(func_name='training.tsfm_I_nets.head_ps_sc',
                     dlatent_size=count_dlatent_size,
                     fmap_min=fmap_min,
                     fmap_max=fmap_max)
        D = EasyDict(func_name='training.networks_stylegan2.D_stylegan2',
                     fmap_min=fmap_min,
                     fmap_max=fmap_max)  # Options for discriminator network.
        desc = 'ps_sc_like'
    elif model_type == 'gan_like':  # Just modular GAN.
        G = EasyDict(
            func_name='training.tsfm_G_nets.G_main_tsfm',
            synthesis_func='G_synthesis_modular_tsfm',
            fmap_min=fmap_min,
            fmap_max=fmap_max,
            fmap_decay=fmap_decay,
            latent_size=count_dlatent_size,
            dlatent_size=count_dlatent_size,
            module_list=module_list,
            use_noise=True,
            return_atts=return_atts,
            G_nf_scale=G_nf_scale,
            trans_dim=trans_dim,
            post_trans_wh=post_trans_wh,
            post_trans_cnn_dim=post_trans_cnn_dim,
            dff=dff,
            trans_rate=trans_rate,
            construct_feat_by_concat=construct_feat_by_concat,
            ncut_maxval=ncut_maxval,
            post_trans_mat=post_trans_mat,
        )  # Options for generator network.
        I = EasyDict()
        D = EasyDict(func_name='training.networks_stylegan2.D_stylegan2',
                     fmap_min=fmap_min,
                     fmap_max=fmap_max)  # Options for discriminator network.
        desc = 'gan_like'
    else:
        raise ValueError('Not supported model tyle: ' + model_type)

    G_opt = EasyDict(beta1=0.0, beta2=0.99,
                     epsilon=1e-8)  # Options for generator optimizer.
    D_opt = EasyDict(beta1=0.0, beta2=0.99,
                     epsilon=1e-8)  # Options for discriminator optimizer.
    if model_type == 'info_gan_like':  # InfoGAN
        G_loss = EasyDict(
            func_name='training.loss_tsfm.G_logistic_ns_info_gan',
            C_lambda=C_lambda,
            latent_type=latent_type,
            norm_ord=norm_ord,
            group_recons_lambda=group_recons_lambda
        )  # Options for generator loss.
        D_loss = EasyDict(
            func_name='training.loss_tsfm.D_logistic_r1_shared',
            latent_type=latent_type)  # Options for discriminator loss.
    elif model_type == 'ps_sc_like':  # PS-SC
        G_loss = EasyDict(
            func_name='training.loss_tsfm.G_logistic_ns_ps_sc',
            C_lambda=C_lambda,
            group_recons_lambda=group_recons_lambda,
            epsilon=epsilon_loss,
            random_eps=random_eps,
            latent_type=latent_type,
            use_cascade=use_cascade)  # Options for generator loss.
        D_loss = EasyDict(
            func_name='training.loss_tsfm.D_logistic_r1_shared',
            latent_type=latent_type)  # Options for discriminator loss.
    elif model_type == 'gan_like':  # Just GAN
        G_loss = EasyDict(func_name='training.loss_tsfm.G_logistic_ns',
                          latent_type=latent_type,
                          group_recons_lambda=group_recons_lambda
                          )  # Options for generator loss.
        D_loss = EasyDict(
            func_name='training.loss_tsfm.D_logistic_r1_shared',
            latent_type=latent_type)  # Options for discriminator loss.

    sched = EasyDict()  # Options for TrainingSchedule.
    grid = EasyDict(
        size='1080p',
        layout='random')  # Options for setup_snapshot_image_grid().
    sc = dnnlib.SubmitConfig()  # Options for dnnlib.submit_run().
    tf_config = {
        'rnd.np_random_seed': random_seed
    }  # Options for tflib.init_tf().

    train.data_dir = data_dir
    train.total_kimg = total_kimg
    train.mirror_augment = mirror_augment
    train.image_snapshot_ticks = train.network_snapshot_ticks = 10
    sched.G_lrate_base = sched.D_lrate_base = learning_rate
    sched.minibatch_size_base = batch_size
    sched.minibatch_gpu_base = batch_per_gpu
    metrics = [metric_defaults[x] for x in metrics]

    desc += '-' + dataset
    dataset_args = EasyDict(tfrecord_dir=dataset, max_label_size='full')

    assert num_gpus in [1, 2, 4, 8]
    sc.num_gpus = num_gpus
    desc += '-%dgpu' % num_gpus

    I.fmap_base = 2 << I_fmap_base
    G.fmap_base = 2 << G_fmap_base
    D.fmap_base = 2 << D_fmap_base

    if gamma is not None:
        D_loss.gamma = gamma

    sc.submit_target = dnnlib.SubmitTarget.LOCAL
    sc.local.do_not_copy_source_files = True
    kwargs = EasyDict(train)
    kwargs.update(
        G_args=G,
        D_args=D,
        I_args=I,
        G_opt_args=G_opt,
        D_opt_args=D_opt,
        G_loss_args=G_loss,
        D_loss_args=D_loss,
        use_info_gan=(
            model_type == 'info_gan_like'),  # Independent branch version
        use_ps_head=(model_type == 'ps_sc_like'),
        avg_mv_for_I=avg_mv_for_I,
        traversal_grid=True,
        return_atts=return_atts)
    n_continuous = 0
    if not (module_list is None):
        for i, key in enumerate(key_ls):
            m_name = key.split('-')[0]
            if (m_name in LATENT_MODULES) and (not m_name == 'D_global'):
                n_continuous += size_ls[i]

    kwargs.update(dataset_args=dataset_args,
                  sched_args=sched,
                  grid_args=grid,
                  metric_arg_list=metrics,
                  tf_config=tf_config,
                  resume_pkl=resume_pkl,
                  n_continuous=n_continuous,
                  n_samples_per=n_samples_per,
                  topk_dims_to_show=topk_dims_to_show,
                  cascade_alt_freq_k=cascade_alt_freq_k,
                  network_snapshot_ticks=network_snapshot_ticks)
    kwargs.submit_config = copy.deepcopy(sc)
    kwargs.submit_config.run_dir_root = result_dir
    kwargs.submit_config.run_desc = desc
    dnnlib.submit_run(**kwargs)
Esempio n. 17
0
def run(dataset,
        data_dir,
        result_dir,
        num_gpus,
        total_kimg,
        mirror_augment,
        metrics,
        resume_pkl,
        model_type='vc_gan2',
        latent_type='uniform',
        batch_size=32,
        batch_per_gpu=16,
        random_seed=1000,
        G_fmap_base=8,
        module_G_list=None,
        G_nf_scale=4,
        E_fmap_base=8,
        module_E_list=None,
        E_nf_scale=4,
        D_fmap_base=9,
        module_D_list=None,
        D_nf_scale=4,
        fmap_decay=0.15,
        fmap_min=16,
        fmap_max=512,
        n_samples_per=10,
        arch='resnet',
        topk_dims_to_show=20,
        hy_beta=1,
        hy_gamma=0,
        hy_1p=0,
        lie_alg_init_type='oth',
        lie_alg_init_scale=0.1,
        G_lrate_base=0.002,
        D_lrate_base=None,
        group_feats_size=400,
        temp=0.67,
        n_discrete=0,
        epsilon=1,
        drange_net=[-1, 1],
        recons_type='bernoulli_loss',
        R_view_scale=1,
        group_feat_type='concat',
        use_sphere_points=False,
        use_learnable_sphere_points=False,
        n_sphere_points=100,
        mapping_after_exp=False,
        snapshot_ticks=10):
    train = EasyDict(
        run_func_name='training.training_loop_gan.training_loop_gan'
    )  # Options for training loop.

    if not (module_G_list is None):
        module_G_list = _str_to_list(module_G_list)
        key_G_ls, size_G_ls, count_dlatent_G_size = split_module_names(
            module_G_list)
    if not (module_E_list is None):
        module_E_list = _str_to_list(module_E_list)
        key_E_ls, size_E_ls, count_dlatent_E_size = split_module_names(
            module_E_list)
    if not (module_D_list is None):
        module_D_list = _str_to_list(module_D_list)
        key_D_ls, size_D_ls, count_dlatent_D_size = split_module_names(
            module_D_list)

    E = EasyDict(func_name='training.gan_networks.E_main_modular',
                 fmap_min=fmap_min,
                 fmap_max=fmap_max,
                 fmap_decay=fmap_decay,
                 latent_size=count_dlatent_E_size,
                 group_feats_size=group_feats_size,
                 module_E_list=module_E_list,
                 nf_scale=E_nf_scale,
                 n_discrete=n_discrete,
                 fmap_base=2 << E_fmap_base)  # Options for encoder network.
    D = EasyDict(
        func_name='training.gan_networks.D_main_modular',
        fmap_min=fmap_min,
        fmap_max=fmap_max,
        fmap_decay=fmap_decay,
        latent_size=count_dlatent_D_size,
        group_feats_size=group_feats_size,
        module_D_list=module_D_list,
        nf_scale=D_nf_scale,
        n_discrete=n_discrete,
        fmap_base=2 << D_fmap_base)  # Options for discriminator network.
    G = EasyDict(func_name='training.gan_networks.G_main_modular',
                 fmap_min=fmap_min,
                 fmap_max=fmap_max,
                 fmap_decay=fmap_decay,
                 latent_size=count_dlatent_G_size,
                 group_feats_size=group_feats_size,
                 module_G_list=module_G_list,
                 nf_scale=G_nf_scale,
                 n_discrete=n_discrete,
                 recons_type=recons_type,
                 lie_alg_init_type=lie_alg_init_type,
                 lie_alg_init_scale=lie_alg_init_scale,
                 R_view_scale=R_view_scale,
                 group_feat_type=group_feat_type,
                 mapping_after_exp=mapping_after_exp,
                 use_sphere_points=use_sphere_points,
                 use_learnable_sphere_points=use_learnable_sphere_points,
                 n_sphere_points=n_sphere_points,
                 fmap_base=2 << G_fmap_base)  # Options for generator network.
    G_opt = EasyDict(beta1=0.9, beta2=0.999,
                     epsilon=1e-8)  # Options for generator optimizer.
    D_opt = EasyDict(beta1=0.9, beta2=0.999,
                     epsilon=1e-8)  # Options for discriminator optimizer.
    desc = model_type + '_modular'

    if model_type == 'so_gan':
        G_loss = EasyDict(
            func_name='training.loss_gan_so.so_gan',
            hy_1p=hy_1p,
            hy_beta=hy_beta,
            latent_type=latent_type,
            recons_type=recons_type)  # Options for generator loss.
        D_loss = EasyDict(
            func_name='training.loss_gan.gan_D',
            latent_type=latent_type)  # Options for discriminator loss.
    else:
        raise ValueError('Unknown model_type:', model_type)

    sched = EasyDict()  # Options for TrainingSchedule.
    grid = EasyDict(
        size='1080p',
        layout='random')  # Options for setup_snapshot_image_grid().
    sc = dnnlib.SubmitConfig()  # Options for dnnlib.submit_run().
    tf_config = {
        'rnd.np_random_seed': random_seed,
        'allow_soft_placement': True
    }  # Options for tflib.init_tf().

    train.data_dir = data_dir
    train.total_kimg = total_kimg
    train.mirror_augment = mirror_augment
    train.image_snapshot_ticks = train.network_snapshot_ticks = snapshot_ticks
    sched.G_lrate_base = G_lrate_base
    sched.D_lrate_base = D_lrate_base
    sched.minibatch_size_base = batch_size
    sched.minibatch_gpu_base = batch_per_gpu
    metrics = [metric_defaults[x] for x in metrics]

    desc += '-' + dataset
    dataset_args = EasyDict(tfrecord_dir=dataset, max_label_size='full')

    assert num_gpus in [1, 2, 4, 8]
    sc.num_gpus = num_gpus
    desc += '-%dgpu' % num_gpus

    sc.submit_target = dnnlib.SubmitTarget.LOCAL
    sc.local.do_not_copy_source_files = True
    kwargs = EasyDict(train)
    kwargs.update(G_args=G,
                  E_args=E,
                  D_args=D,
                  G_opt_args=G_opt,
                  D_opt_args=D_opt,
                  G_loss_args=G_loss,
                  D_loss_args=D_loss,
                  traversal_grid=True)
    kwargs.update(dataset_args=dataset_args,
                  sched_args=sched,
                  grid_args=grid,
                  n_continuous=count_dlatent_G_size,
                  n_discrete=n_discrete,
                  drange_net=drange_net,
                  metric_arg_list=metrics,
                  tf_config=tf_config,
                  resume_pkl=resume_pkl,
                  n_samples_per=n_samples_per,
                  topk_dims_to_show=topk_dims_to_show)
    kwargs.submit_config = copy.deepcopy(sc)
    kwargs.submit_config.run_dir_root = result_dir
    kwargs.submit_config.run_desc = desc
    dnnlib.submit_run(**kwargs)
Esempio n. 18
0
def run(dataset, data_dir, result_dir, num_gpus, total_kimg, mirror_augment,
        metrics, resume, resume_with_new_nets, disable_style_mod,
        disable_cond_mod):

    train = EasyDict(run_func_name='training.training_loop.training_loop'
                     )  # Options for training loop.
    G = EasyDict(func_name='training.co_mod_gan.G_main'
                 )  # Options for generator network.
    D = EasyDict(func_name='training.co_mod_gan.D_co_mod_gan'
                 )  # Options for discriminator network.
    G_opt = EasyDict(beta1=0.0, beta2=0.99,
                     epsilon=1e-8)  # Options for generator optimizer.
    D_opt = EasyDict(beta1=0.0, beta2=0.99,
                     epsilon=1e-8)  # Options for discriminator optimizer.
    G_loss = EasyDict(func_name='training.loss.G_masked_logistic_ns_l1'
                      )  # Options for generator loss.
    D_loss = EasyDict(func_name='training.loss.D_masked_logistic_r1'
                      )  # Options for discriminator loss.
    sched = EasyDict()  # Options for TrainingSchedule.
    grid = EasyDict(
        size='8k', layout='random')  # Options for setup_snapshot_image_grid().
    sc = dnnlib.SubmitConfig()  # Options for dnnlib.submit_run().
    tf_config = {'rnd.np_random_seed': 1000}  # Options for tflib.init_tf().

    train.data_dir = data_dir
    train.total_kimg = total_kimg
    train.mirror_augment = mirror_augment
    train.image_snapshot_ticks = train.network_snapshot_ticks = 10
    sched.G_lrate_base = sched.D_lrate_base = 0.002
    sched.minibatch_size_base = 32
    sched.minibatch_gpu_base = 4
    D_loss.gamma = 10
    metrics = [metric_defaults[x] for x in metrics]
    desc = 'co-mod-gan'

    desc += '-' + os.path.basename(dataset)
    dataset_args = EasyDict(tfrecord_dir=dataset)

    assert num_gpus in [1, 2, 4, 8]
    sc.num_gpus = num_gpus
    desc += '-%dgpu' % num_gpus

    if resume is not None:
        resume_kimg = int(
            os.path.basename(resume).replace('.pkl', '').split('-')[-1])
    else:
        resume_kimg = 0

    if disable_style_mod:
        G.style_mod = False

    if disable_cond_mod:
        G.cond_mod = False

    sc.submit_target = dnnlib.SubmitTarget.LOCAL
    sc.local.do_not_copy_source_files = True
    kwargs = EasyDict(train)
    kwargs.update(G_args=G,
                  D_args=D,
                  G_opt_args=G_opt,
                  D_opt_args=D_opt,
                  G_loss_args=G_loss,
                  D_loss_args=D_loss)
    kwargs.update(dataset_args=dataset_args,
                  sched_args=sched,
                  grid_args=grid,
                  metric_arg_list=metrics,
                  tf_config=tf_config)
    kwargs.update(resume_pkl=resume,
                  resume_kimg=resume_kimg,
                  resume_with_new_nets=resume_with_new_nets)
    kwargs.submit_config = copy.deepcopy(sc)
    kwargs.submit_config.run_dir_root = result_dir
    kwargs.submit_config.run_desc = desc
    dnnlib.submit_run(**kwargs)
Esempio n. 19
0
def run(dataset,
        data_dir,
        result_dir,
        config_id,
        num_gpus,
        total_kimg,
        gamma,
        mirror_augment,
        metrics,
        resume_pkl,
        fmap_decay=0.15,
        D_lambda=1,
        C_lambda=1,
        MI_lambda=1,
        cls_alpha=0,
        n_samples_per=10,
        module_list=None,
        single_const=True,
        model_type='spatial_biased',
        phi_blurry=0.5,
        latent_type='uniform'):

    train = EasyDict(
        run_func_name='training.training_loop_vid.training_loop_vid'
    )  # Options for training loop.

    D_global_size = 0

    module_list = _str_to_list(module_list)
    key_ls, size_ls, count_dlatent_size, _ = split_module_names(module_list)
    for i, key in enumerate(key_ls):
        if key.startswith('D_global'):
            D_global_size += size_ls[i]
            break
    print('D_global_size:', D_global_size)
    print('key_ls:', key_ls)
    print('size_ls:', size_ls)
    print('count_dlatent_size:', count_dlatent_size)

    if model_type == 'vid_model':
        G = EasyDict(func_name='training.vid_networks.G_main_vid',
                     synthesis_func='G_synthesis_vid_modular',
                     fmap_min=16,
                     fmap_max=512,
                     fmap_decay=fmap_decay,
                     latent_size=count_dlatent_size,
                     dlatent_size=count_dlatent_size,
                     D_global_size=D_global_size,
                     module_list=module_list,
                     single_const=single_const,
                     use_noise=True)  # Options for generator network.
        I = EasyDict(func_name='training.vid_networks.vid_head',
                     dlatent_size=count_dlatent_size,
                     D_global_size=D_global_size,
                     fmap_max=512)
        D = EasyDict(func_name='training.networks_stylegan2.D_stylegan2',
                     fmap_max=512)  # Options for discriminator network.
        I_info = EasyDict()
        desc = model_type
    elif model_type == 'vid_with_cls':
        G = EasyDict(func_name='training.vid_networks.G_main_vid',
                     synthesis_func='G_synthesis_vid_modular',
                     fmap_min=16,
                     fmap_max=512,
                     fmap_decay=fmap_decay,
                     latent_size=count_dlatent_size,
                     dlatent_size=count_dlatent_size,
                     D_global_size=D_global_size,
                     module_list=module_list,
                     single_const=single_const,
                     use_noise=True)  # Options for generator network.
        I = EasyDict(func_name='training.vid_networks.vid_head',
                     dlatent_size=count_dlatent_size,
                     D_global_size=D_global_size,
                     fmap_max=512)
        I_info = EasyDict(
            func_name='training.info_gan_networks.info_gan_head_cls',
            dlatent_size=count_dlatent_size,
            D_global_size=D_global_size,
            fmap_decay=fmap_decay,
            fmap_min=16,
            fmap_max=512)
        D = EasyDict(
            func_name='training.info_gan_networks.D_info_gan_stylegan2',
            fmap_max=512)  # Options for discriminator network.
        desc = model_type
    elif model_type == 'vid_naive_cluster_model':
        G = EasyDict(func_name='training.vid_networks.G_main_vid',
                     synthesis_func='G_synthesis_vid_modular',
                     fmap_min=16,
                     fmap_max=512,
                     fmap_decay=fmap_decay,
                     latent_size=count_dlatent_size,
                     dlatent_size=count_dlatent_size,
                     D_global_size=D_global_size,
                     module_list=module_list,
                     single_const=single_const,
                     use_noise=True)  # Options for generator network.
        I = EasyDict(func_name='training.vid_networks.vid_naive_cluster_head',
                     dlatent_size=count_dlatent_size,
                     D_global_size=D_global_size,
                     fmap_max=512)  # Options for estimator network.
        D = EasyDict(func_name='training.networks_stylegan2.D_stylegan2',
                     fmap_max=512)  # Options for discriminator network.
        I_info = EasyDict()
        desc = model_type
    elif model_type == 'vid_blurry_model':
        G = EasyDict(func_name='training.vid_networks.G_main_vid',
                     synthesis_func='G_synthesis_vid_modular',
                     fmap_min=16,
                     fmap_max=512,
                     fmap_decay=fmap_decay,
                     latent_size=count_dlatent_size,
                     dlatent_size=count_dlatent_size,
                     D_global_size=D_global_size,
                     module_list=module_list,
                     single_const=single_const,
                     use_noise=True)  # Options for generator network.
        I = EasyDict(func_name='training.vid_networks.vid_naive_cluster_head',
                     dlatent_size=count_dlatent_size,
                     D_global_size=D_global_size,
                     fmap_max=512)  # Options for estimator network.
        D = EasyDict(func_name='training.networks_stylegan2.D_stylegan2',
                     fmap_max=512)  # Options for discriminator network.
        I_info = EasyDict()
        desc = model_type
    else:
        raise ValueError('Not supported model tyle: ' + model_type)

    G_opt = EasyDict(beta1=0.0, beta2=0.99,
                     epsilon=1e-8)  # Options for generator optimizer.
    D_opt = EasyDict(beta1=0.0, beta2=0.99,
                     epsilon=1e-8)  # Options for discriminator optimizer.
    I_opt = EasyDict(beta1=0.0, beta2=0.99,
                     epsilon=1e-8)  # Options for discriminator optimizer.
    if model_type == 'vid_model':
        G_loss = EasyDict(
            func_name='training.loss_vid.G_logistic_ns_vid',
            D_global_size=D_global_size,
            C_lambda=C_lambda,
            latent_type=latent_type)  # Options for generator loss.
        D_loss = EasyDict(
            func_name='training.loss_vid.D_logistic_r1_vid',
            D_global_size=D_global_size,
            latent_type=latent_type)  # Options for discriminator loss.
        I_loss = EasyDict(func_name='training.loss_vid.I_vid',
                          D_global_size=D_global_size,
                          latent_type=latent_type,
                          C_lambda=C_lambda,
                          MI_lambda=MI_lambda)  # Options for estimator loss.
    elif model_type == 'vid_with_cls':
        G_loss = EasyDict(
            func_name='training.loss_vid.G_logistic_ns_vid',
            D_global_size=D_global_size,
            C_lambda=C_lambda,
            cls_alpha=cls_alpha,
            latent_type=latent_type)  # Options for generator loss.
        D_loss = EasyDict(
            func_name='training.loss_vid.D_logistic_r1_info_gan_vid',
            D_global_size=D_global_size,
            latent_type=latent_type)  # Options for discriminator loss.
        I_loss = EasyDict(func_name='training.loss_vid.I_vid',
                          D_global_size=D_global_size,
                          latent_type=latent_type,
                          C_lambda=C_lambda,
                          MI_lambda=MI_lambda)  # Options for estimator loss.
    elif model_type == 'vid_naive_cluster_model':
        G_loss = EasyDict(
            func_name='training.loss_vid.G_logistic_ns_vid_naive_cluster',
            D_global_size=D_global_size,
            C_lambda=C_lambda,
            latent_type=latent_type)  # Options for generator loss.
        D_loss = EasyDict(
            func_name='training.loss_vid.D_logistic_r1_vid',
            D_global_size=D_global_size,
            latent_type=latent_type)  # Options for discriminator loss.
        I_loss = EasyDict()  # Options for estimator loss.
        I_opt = EasyDict()
    elif model_type == 'vid_blurry_model':
        G_loss = EasyDict(
            func_name='training.loss_vid.G_logistic_ns_vid_naive_cluster',
            D_global_size=D_global_size,
            C_lambda=C_lambda,
            latent_type=latent_type)  # Options for generator loss.
        D_loss = EasyDict(
            func_name='training.loss_vid.D_logistic_r1_vid',
            D_global_size=D_global_size,
            latent_type=latent_type)  # Options for discriminator loss.
        I_loss = EasyDict(func_name='training.loss_vid.I_vid_blurry',
                          D_global_size=D_global_size,
                          latent_type=latent_type,
                          C_lambda=C_lambda,
                          MI_lambda=MI_lambda,
                          phi=phi_blurry)  # Options for estimator loss.
    else:
        raise ValueError('Not supported loss tyle: ' + model_type)

    sched = EasyDict()  # Options for TrainingSchedule.
    grid = EasyDict(
        size='1080p',
        layout='random')  # Options for setup_snapshot_image_grid().
    sc = dnnlib.SubmitConfig()  # Options for dnnlib.submit_run().
    tf_config = {'rnd.np_random_seed': 1000}  # Options for tflib.init_tf().

    train.data_dir = data_dir
    train.total_kimg = total_kimg
    train.mirror_augment = mirror_augment
    train.image_snapshot_ticks = train.network_snapshot_ticks = 10
    sched.G_lrate_base = sched.D_lrate_base = sched.I_lrate_base = 0.002
    sched.minibatch_size_base = 16
    sched.minibatch_gpu_base = 8
    D_loss.gamma = 10
    metrics = [metric_defaults[x] for x in metrics]

    desc += '-' + dataset
    dataset_args = EasyDict(tfrecord_dir=dataset, max_label_size='full')

    assert num_gpus in [1, 2, 4, 8]
    sc.num_gpus = num_gpus
    desc += '-%dgpu' % num_gpus

    assert config_id in _valid_configs
    desc += '-' + config_id

    # Configs A-E: Shrink networks to match original StyleGAN.
    if config_id != 'config-f':
        # I.fmap_base = G.fmap_base = D.fmap_base = 8 << 10
        I.fmap_base = G.fmap_base = D.fmap_base = 2 << 8

    # Config E: Set gamma to 100 and override G & D architecture.
    if config_id.startswith('config-e'):
        D_loss.gamma = 100
        if 'Gorig' in config_id: G.architecture = 'orig'
        if 'Gskip' in config_id: G.architecture = 'skip'  # (default)
        if 'Gresnet' in config_id: G.architecture = 'resnet'
        if 'Dorig' in config_id: D.architecture = 'orig'
        if 'Dskip' in config_id: D.architecture = 'skip'
        if 'Dresnet' in config_id: D.architecture = 'resnet'  # (default)

    if gamma is not None:
        D_loss.gamma = gamma

    sc.submit_target = dnnlib.SubmitTarget.LOCAL
    sc.local.do_not_copy_source_files = True
    kwargs = EasyDict(train)
    kwargs.update(
        G_args=G,
        D_args=D,
        I_args=I,
        I_info_args=I_info,
        G_opt_args=G_opt,
        D_opt_args=D_opt,
        I_opt_args=I_opt,
        G_loss_args=G_loss,
        D_loss_args=D_loss,
        I_loss_args=I_loss,
        use_vid_head=(model_type == 'vid_model'),
        use_vid_head_with_cls=(model_type == 'vid_with_cls'),
        use_vid_naive_cluster=(model_type == 'vid_naive_cluster_model'),
        use_vid_blurry=(model_type == 'vid_blurry_model'),
        traversal_grid=True)
    n_continuous = 0
    for i, key in enumerate(key_ls):
        m_name = key.split('-')[0]
        if (m_name in LATENT_MODULES) and (not m_name == 'D_global'):
            n_continuous += size_ls[i]

    kwargs.update(dataset_args=dataset_args,
                  sched_args=sched,
                  grid_args=grid,
                  metric_arg_list=metrics,
                  tf_config=tf_config,
                  resume_pkl=resume_pkl,
                  n_discrete=D_global_size,
                  n_continuous=n_continuous,
                  n_samples_per=n_samples_per,
                  C_lambda=C_lambda,
                  MI_lambda=MI_lambda)
    kwargs.submit_config = copy.deepcopy(sc)
    kwargs.submit_config.run_dir_root = result_dir
    kwargs.submit_config.run_desc = desc
    dnnlib.submit_run(**kwargs)
Esempio n. 20
0
def run(dataset, data_dir, result_dir, config_id, num_gpus, total_kimg, gamma,
        mirror_augment, metrics):
    train = EasyDict(run_func_name='training.training_loop.training_loop'
                     )  # Options for training loop.
    G = EasyDict(func_name='training.networks_stylegan2.G_main'
                 )  # Options for generator network.
    D = EasyDict(func_name='training.networks_stylegan2.D_stylegan2'
                 )  # Options for discriminator network.
    G_opt = EasyDict(beta1=0.0, beta2=0.99,
                     epsilon=1e-8)  # Options for generator optimizer.
    D_opt = EasyDict(beta1=0.0, beta2=0.99,
                     epsilon=1e-8)  # Options for discriminator optimizer.
    G_loss = EasyDict(func_name='training.loss.G_logistic_ns_pathreg'
                      )  # Options for generator loss.
    D_loss = EasyDict(func_name='training.loss.D_logistic_r1'
                      )  # Options for discriminator loss.
    sched = EasyDict()  # Options for TrainingSchedule.
    grid = EasyDict(
        size='8k', layout='random')  # Options for setup_snapshot_image_grid().
    sc = dnnlib.SubmitConfig()  # Options for dnnlib.submit_run().
    tf_config = {'rnd.np_random_seed': 1000}  # Options for tflib.init_tf().

    train.data_dir = data_dir
    train.total_kimg = total_kimg
    train.mirror_augment = mirror_augment
    train.image_snapshot_ticks = train.network_snapshot_ticks = 2
    sched.G_lrate_base = sched.D_lrate_base = 0.002
    sched.minibatch_size_base = 32
    sched.minibatch_gpu_base = 4
    D_loss.gamma = 10
    metrics = [metric_defaults[x] for x in metrics]
    desc = 'stylegan2'

    desc += '-' + dataset
    dataset_args = EasyDict(tfrecord_dir=dataset)

    assert num_gpus in [1, 2, 4, 8]
    sc.num_gpus = num_gpus
    desc += '-%dgpu' % num_gpus

    assert config_id in _valid_configs
    desc += '-' + config_id

    # Configs A-E: Shrink networks to match original StyleGAN.
    if config_id != 'config-f':
        G.fmap_base = D.fmap_base = 8 << 10

    # Config E: Set gamma to 100 and override G & D architecture.
    if config_id.startswith('config-e'):
        D_loss.gamma = 100
        if 'Gorig' in config_id: G.architecture = 'orig'
        if 'Gskip' in config_id: G.architecture = 'skip'  # (default)
        if 'Gresnet' in config_id: G.architecture = 'resnet'
        if 'Dorig' in config_id: D.architecture = 'orig'
        if 'Dskip' in config_id: D.architecture = 'skip'
        if 'Dresnet' in config_id: D.architecture = 'resnet'  # (default)

    # Configs A-D: Enable progressive growing and switch to networks that support it.
    if config_id in ['config-a', 'config-b', 'config-c', 'config-d']:
        sched.lod_initial_resolution = 8
        sched.G_lrate_base = sched.D_lrate_base = 0.001
        sched.G_lrate_dict = sched.D_lrate_dict = {
            128: 0.0015,
            256: 0.002,
            512: 0.003,
            1024: 0.003
        }
        sched.minibatch_size_base = 32  # (default)
        sched.minibatch_size_dict = {8: 256, 16: 128, 32: 64, 64: 32}
        sched.minibatch_gpu_base = 4  # (default)
        sched.minibatch_gpu_dict = {8: 32, 16: 16, 32: 8, 64: 4}
        G.synthesis_func = 'G_synthesis_stylegan_revised'
        D.func_name = 'training.networks_stylegan2.D_stylegan'

    # Configs A-C: Disable path length regularization.
    if config_id in ['config-a', 'config-b', 'config-c']:
        G_loss = EasyDict(func_name='training.loss.G_logistic_ns')

    # Configs A-B: Disable lazy regularization.
    if config_id in ['config-a', 'config-b']:
        train.lazy_regularization = False

    # Config A: Switch to original StyleGAN networks.
    if config_id == 'config-a':
        G = EasyDict(func_name='training.networks_stylegan.G_style')
        D = EasyDict(func_name='training.networks_stylegan.D_basic')

    if gamma is not None:
        D_loss.gamma = gamma

    sc.submit_target = dnnlib.SubmitTarget.LOCAL
    sc.local.do_not_copy_source_files = True
    kwargs = EasyDict(train)
    kwargs.update(G_args=G,
                  D_args=D,
                  G_opt_args=G_opt,
                  D_opt_args=D_opt,
                  G_loss_args=G_loss,
                  D_loss_args=D_loss)
    kwargs.update(dataset_args=dataset_args,
                  sched_args=sched,
                  grid_args=grid,
                  metric_arg_list=metrics,
                  tf_config=tf_config)
    kwargs.submit_config = copy.deepcopy(sc)
    kwargs.submit_config.run_dir_root = result_dir
    kwargs.submit_config.run_desc = desc
    dnnlib.submit_run(**kwargs)
Esempio n. 21
0
def run(dataset,
        data_dir,
        result_dir,
        config_id,
        num_gpus,
        total_kimg,
        mirror_augment,
        metrics,
        resume_G_pkl,
        n_batch=2,
        n_batch_per_gpu=1,
        D_global_size=0,
        C_global_size=10,
        model_type='hd_dis_model',
        latent_type='uniform',
        resume_pkl=None,
        n_samples_per=4,
        D_lambda=0,
        C_lambda=1,
        epsilon_in_loss=3,
        random_eps=True,
        M_lrmul=0.1,
        resolution_manual=1024,
        pretrained_type='with_stylegan2',
        traj_lambda=None,
        level_I_kimg=1000,
        use_level_training=False,
        resume_kimg=0,
        use_std_in_m=False,
        prior_latent_size=512,
        M_mapping_fmaps=512,
        hyperplane_lambda=1,
        hyperdir_lambda=1):
    train = EasyDict(run_func_name='training.training_loop_hd.training_loop_hd'
                     )  # Options for training loop with pretrained HD.
    if model_type == 'hd_hyperplane':
        M = EasyDict(
            func_name='training.hd_networks.net_M_hyperplane',
            C_global_size=C_global_size,
            D_global_size=D_global_size,
            latent_size=prior_latent_size,
            mapping_lrmul=M_lrmul,
            use_std_in_m=use_std_in_m)  # Options for dismapper network.
        I = EasyDict(
            func_name='training.hd_networks.net_I',
            C_global_size=C_global_size,
            D_global_size=D_global_size)  # Options for recognizor network.
    else:
        M = EasyDict(
            func_name='training.hd_networks.net_M',
            C_global_size=C_global_size,
            D_global_size=D_global_size,
            latent_size=prior_latent_size,
            mapping_fmaps=M_mapping_fmaps,
            mapping_lrmul=M_lrmul,
            use_std_in_m=use_std_in_m)  # Options for dismapper network.
        I = EasyDict(
            func_name='training.hd_networks.net_I',
            C_global_size=C_global_size,
            D_global_size=D_global_size)  # Options for recognizor network.
    if model_type == 'hd_dis_model_with_cls':
        I_info = EasyDict(func_name='training.hd_networks.net_I_info',
                          C_global_size=C_global_size,
                          D_global_size=D_global_size)
    else:
        I_info = EasyDict()
    I_opt = EasyDict(beta1=0.0, beta2=0.99,
                     epsilon=1e-8)  # Options for discriminator optimizer.
    if model_type == 'hd_hyperplane':
        I_loss = EasyDict(
            func_name='training.loss_hd.IandM_hyperplane_loss',
            latent_type=latent_type,
            D_global_size=D_global_size,
            C_global_size=C_global_size,
            D_lambda=D_lambda,
            C_lambda=C_lambda,
            epsilon=epsilon_in_loss,
            random_eps=random_eps,
            traj_lambda=traj_lambda,
            resolution_manual=resolution_manual,
            use_std_in_m=use_std_in_m,
            model_type=model_type,
            hyperplane_lambda=hyperplane_lambda,
            prior_latent_size=prior_latent_size,
            hyperdir_lambda=hyperdir_lambda)  # Options for discriminator loss.
    else:
        I_loss = EasyDict(func_name='training.loss_hd.IandM_loss',
                          latent_type=latent_type,
                          D_global_size=D_global_size,
                          C_global_size=C_global_size,
                          D_lambda=D_lambda,
                          C_lambda=C_lambda,
                          epsilon=epsilon_in_loss,
                          random_eps=random_eps,
                          traj_lambda=traj_lambda,
                          resolution_manual=resolution_manual,
                          use_std_in_m=use_std_in_m,
                          model_type=model_type,
                          hyperplane_lambda=hyperplane_lambda,
                          prior_latent_size=prior_latent_size
                          )  # Options for discriminator loss.
    sched = EasyDict()  # Options for TrainingSchedule.
    grid = EasyDict(
        size='1080p',
        layout='random')  # Options for setup_snapshot_image_grid().
    sc = dnnlib.SubmitConfig()  # Options for dnnlib.submit_run().
    tf_config = {'rnd.np_random_seed': 1000}  # Options for tflib.init_tf().

    train.data_dir = data_dir
    train.total_kimg = total_kimg
    train.mirror_augment = mirror_augment
    train.image_snapshot_ticks = train.network_snapshot_ticks = 10
    sched.I_lrate_base = 0.002
    sched.minibatch_size_base = n_batch
    sched.minibatch_gpu_base = n_batch_per_gpu
    metrics = [metric_defaults[x] for x in metrics]
    desc = 'hd_disentanglement'

    desc += '-' + dataset
    dataset_args = EasyDict(tfrecord_dir=dataset)

    assert num_gpus in [1, 2, 4, 8]
    sc.num_gpus = num_gpus
    desc += '-%dgpu' % num_gpus

    assert config_id in _valid_configs
    desc += '-' + config_id

    # Configs A-E: Shrink networks to match original StyleGAN.
    if config_id != 'config-f':
        I.fmap_base = 8 << 10

    sc.submit_target = dnnlib.SubmitTarget.LOCAL
    sc.local.do_not_copy_source_files = True
    kwargs = EasyDict(train)
    kwargs.update(I_args=I,
                  M_args=M,
                  I_opt_args=I_opt,
                  I_loss_args=I_loss,
                  resume_G_pkl=resume_G_pkl)
    kwargs.update(dataset_args=dataset_args,
                  sched_args=sched,
                  grid_args=grid,
                  use_hd_with_cls=(model_type == 'hd_dis_model_with_cls'),
                  use_hyperplane=(model_type == 'hd_hyperplane'),
                  metric_arg_list=metrics,
                  tf_config=tf_config,
                  resume_pkl=resume_pkl,
                  n_discrete=D_global_size,
                  n_continuous=C_global_size,
                  n_samples_per=n_samples_per,
                  resolution_manual=resolution_manual,
                  pretrained_type=pretrained_type,
                  level_I_kimg=level_I_kimg,
                  use_level_training=use_level_training,
                  resume_kimg=resume_kimg,
                  use_std_in_m=use_std_in_m,
                  prior_latent_size=prior_latent_size)
    kwargs.submit_config = copy.deepcopy(sc)
    kwargs.submit_config.run_dir_root = result_dir
    kwargs.submit_config.run_desc = desc
    dnnlib.submit_run(**kwargs)