Esempio n. 1
0
def test_tf_dataset_load_prepare_fashion_mnist_incompatible_shape():
    """ Load Fashion MNIST dataset (quick), attempt to prepare for input with less dimensions """
    test_data = DataSet()
    load_test_data('fashion_mnist', test_data, 128)

    with pytest.raises(ModelError):
        test_data.x_format = keras_prepare_input(np.float, np.array([None,
                                                                     32]),
                                                 test_data.x)
def test_keras_list_models():

    model_sequence = KerasModelSequence(DataSet())

    model_paths = model_sequence.list_models(['./dnnviewer-data/models'])

    assert len(model_paths) > 0
Esempio n. 3
0
def test_tf_dataset_load_prepare_fashion_mnist():
    """ Load Fashion MNIST dataset (quick), prepare for model with 32x32 input """
    test_data = DataSet()
    load_test_data('fashion_mnist', test_data, 128)

    assert test_data.mode is DataSet.MODE_FILESET
    assert np.array_equal(test_data.x.shape, [128, 28, 28, 1])
    assert test_data.x.dtype is np.dtype('|u1'), "uint8"
    assert np.array_equal(test_data.y.shape, [128])
    assert test_data.y.dtype is np.dtype('<i8'), "int64"

    test_data.x_format = keras_prepare_input(np.float,
                                             np.array([None, 32, 32, 1]),
                                             test_data.x)

    assert np.array_equal(test_data.x_format.shape, [128, 32, 32, 1])
    assert test_data.x_format.dtype is np.dtype('<f8'), "float32"
Esempio n. 4
0
def test_tf_dataset_load_mnist():
    """ Load MNIST dataset (quick)"""
    test_data = DataSet()
    load_test_data('mnist', test_data, 128)

    assert test_data.mode is DataSet.MODE_FILESET
    assert np.array_equal(test_data.x.shape, [128, 28, 28, 1])
    assert np.array_equal(test_data.y.shape, [128])
def test_keras_list_model_sequences():

    model_sequence = KerasModelSequence(DataSet())

    model_paths = model_sequence.list_models(
        ['./dnnviewer-data/models/FashionMNIST_checkpoints'],
        '{model}_{epoch}')

    assert len(model_paths) == 3
    assert model_paths[
        0] == 'dnnviewer-data/models/FashionMNIST_checkpoints/model1_{epoch}'
    assert model_paths[
        1] == 'dnnviewer-data/models/FashionMNIST_checkpoints/model2_{epoch}'
    assert model_paths[
        2] == 'dnnviewer-data/models/FashionMNIST_checkpoints/model3_{epoch}'
Esempio n. 6
0
def test_tf_keras_prepare_labels_unneeded():
    """ Prepare labels in case unneeded """

    test_data = DataSet()
    load_test_data('fashion_mnist', test_data, 128)

    assert np.array_equal(test_data.y.shape, [128])
    assert test_data.y.dtype is np.dtype('<i8'), "int32"

    model = keras.models.Sequential([keras.layers.Dense(10)])
    model.compile(loss=keras.losses.BinaryCrossentropy())

    prepared_labels = keras_prepare_labels(model, test_data.y)

    assert np.array_equal(prepared_labels.shape,
                          [128]), "unchanged from input labels"
Esempio n. 7
0
def test_tf_keras_prepare_labels():
    """ Prepare labels in case of categorical crossentropy loss """

    test_data = DataSet()
    load_test_data('fashion_mnist', test_data, 128)

    assert np.array_equal(test_data.y.shape, [128])
    assert test_data.y.dtype is np.dtype('<i8'), "int32"

    model = keras.models.Sequential([keras.layers.Dense(10)])
    model.compile(loss=keras.losses.CategoricalCrossentropy(from_logits=False))

    prepared_labels = keras_prepare_labels(model, test_data.y)

    assert np.array_equal(prepared_labels.shape, [128, 10])
    assert prepared_labels.dtype is np.dtype('<f4'), "float32"
Esempio n. 8
0
async def run_app(args):
    """ Run the app """

    logger = logging.getLogger('dnnviewer')

    # create console handler
    console_handler = logging.StreamHandler()
    formatter = logging.Formatter(
        '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    console_handler.setFormatter(formatter)
    logger.addHandler(console_handler)

    numeric_level = getattr(logging, args.log_level.upper(), None)
    if isinstance(numeric_level, int):
        logger.setLevel(numeric_level)
        console_handler.setLevel(numeric_level)

    # Create App, set stylesheets
    app = dash.Dash(
        __name__,
        assets_folder="assets",
        external_stylesheets=[dbc.themes.BOOTSTRAP, font_awesome.CDN_CSS_URL])
    app.title = 'DNN Viewer'

    # Parameters for model selection
    model_selection = {}

    # Test data
    test_data = DataSet()
    model_selection['test_dataset'] = args.test_dataset
    model_selection['test_mode'] = DataSet.MODE_FILESET  # Default in any case

    # Model sequence : currently only supporting from Keras
    model_sequence = KerasModelSequence(test_data)

    # Initialize the model sequence
    model_selection['model'] = args.model_keras
    model_selection['sequence'] = args.sequence_keras
    preselection = True and model_selection['model'] or model_selection[
        'sequence']

    # Model selection
    if args.model_directories:
        model_selection['directories'] = args.model_directories.split(',')
    else:
        model_selection['directories'] = []
    model_selection['pattern'] = args.sequence_pattern

    # Top level pages
    grapher = Grapher()
    router = Router()
    router.add_route(
        '/',
        MainModelSelection(app, model_selection, model_sequence, test_data,
                           grapher))
    router.add_route(
        '/network-view',
        MainNetworkView(app, model_sequence, test_data, grapher,
                        not preselection))

    def main_layout():
        return router.layout()

    # Top level layout : manage URL + current page content
    app.layout = main_layout

    # Install the callbacks
    [p.callbacks() for p in router.pages.values()]

    router.callbacks(app)

    # Run the server, will call the layout
    app.run_server(debug=args.debug)

    app.serve_routes()