def __init__(self, input_data, input_params):
     self.input_data = input_data
     self.input_params = input_params
     self.model = cpx.Model('prod_planning')
     self._create_decision_variables()
     self._create_main_constraints()
     self._set_objective_function()
Esempio n. 2
0
 def solve(self, adj, cost=None):
     u, s = np.shape(adj)
     U = range(1, u + 1)
     S = range(1, s + 1)
     opt_model = cpx.Model(name="SCP Model")
     x_vars = {i: opt_model.binary_var(name="x_{0}".format(i)) for i in S}
     constraints = {
         j: opt_model.add_constraint(
             ct=opt_model.sum(adj[j - 1, i - 1] * x_vars[i]
                              for i in S) >= 1,
             ctname="constraint_{0}".format(j))
         for j in U
     }
     if cost is not None:
         objective = opt_model.sum(cost[i - 1] * x_vars[i] for i in S)
     else:
         objective = opt_model.sum(x_vars[i] for i in S)
     time_lim = 10
     opt_model.minimize(objective)
     opt_model.parameters.timelimit.set(time_lim)
     opt_model.parameters.mip.strategy.lbheur.set(1)
     opt_model.parameters.mip.cuts.zerohalfcut.set(2)
     opt_model.solve()
     opt_df = pd.DataFrame.from_dict(x_vars,
                                     orient="index",
                                     columns=["variable_object"])
     #opt_df.reset_index(inplace=True)
     opt_df["solution_value"] = opt_df["variable_object"].apply(
         lambda item: item.solution_value)
     return opt_df
Esempio n. 3
0
    def __init__(self, models, L=None):

        self.M = models[list(models.keys())[0]].get_weights()[0].shape[
            0]  # number of items in the value model = dimension of input layer
        self.Models = models  # dict of keras models
        # sorted list of bidders
        self.sorted_bidders = list(self.Models.keys())
        self.sorted_bidders.sort()
        self.N = len(models)  # number of bidders
        self.Mip = cpx.Model(
            name="NeuralNetworksMixedIntegerProgram")  # docplex instance
        self.z = {}  # MIP variable: see paper
        self.s = {}  # MIP variable: see paper
        self.y = {}  # MIP variable: see paper
        self.x_star = np.ones(
            (self.N, self.M)) * (-1)  # optimal allocation (-1=not yet solved)
        self.L = L  # global big-M variable: see paper
        self.soltime = None  # timing
        self.z_help = {}  # helper variable for bound tightening
        self.s_help = {}  # helper variable for bound tightening
        self.y_help = {}  # helper variable for bound tightening

        # upper bounds for MIP variables z,s. Lower bounds are 0 in our setting.
        self.upper_bounds_z = OrderedDict(
            list((bidder_name, [
                np.array([self.L] * layer.output.shape[1]).reshape(-1, 1)
                for layer in self._get_model_layers(
                    bidder_name, layer_type=['dense', 'input'])
            ]) for bidder_name in self.sorted_bidders))
        self.upper_bounds_s = OrderedDict(
            list((bidder_name, [
                np.array([self.L] * layer.output.shape[1]).reshape(-1, 1)
                for layer in self._get_model_layers(
                    bidder_name, layer_type=['dense', 'input'])
            ]) for bidder_name in self.sorted_bidders))
Esempio n. 4
0
def init_ET_global_solution(jobs, problem):
    et_global_solution = ET_global_solution()
    # Create model
    opt_model = cpx.Model(name="Calculate E/T Model")
    opt_model.parameters.simplex.tolerances.feasibility = 0.0000001
    n = len(jobs)

    # Decision parameters
    end_times = opt_model.continuous_var_list(n,
                                              lb=0,
                                              name="end_time_of_job_%s")
    earlis = opt_model.continuous_var_list(n, lb=0, name="earliness_of_job_%s")
    tardis = opt_model.continuous_var_list(n, lb=0, name="tardiness_of_job_%s")
    # constraint
    opt_model.add_constraints_(
        end_times[i] + problem.processing_times[jobs[i + 1]] <= end_times[i +
                                                                          1]
        for i in range(n - 1))

    # constraint
    opt_model.add_constraints_(end_times[i] + earlis[i] -
                               tardis[i] == problem.due_dates[jobs[i]]
                               for i in range(n))

    # Objective function
    objective_function = opt_model.sum(
        earlis[i] * problem.earliness_penalties[jobs[i]] +
        tardis[i] * problem.tardiness_penalties[jobs[i]] for i in range(n))
    # minimize objective
    opt_model.minimize(objective_function)
    opt_model.solve()

    block_obj = 0
    et_global_solution.block_starttimes.append(
        opt_model.solution.get_value("end_time_of_job_" + str(0)) -
        problem.processing_times[jobs[0]])
    for i in range(n - 1):
        end1 = opt_model.solution.get_value("end_time_of_job_" + str(i))
        end2 = opt_model.solution.get_value("end_time_of_job_" + str(i + 1))
        block_obj += opt_model.solution.get_value(
            "earliness_of_job_" + str(i)) * problem.earliness_penalties[
                jobs[i]] + opt_model.solution.get_value(
                    "tardiness_of_job_" +
                    str(i)) * problem.tardiness_penalties[jobs[i]]
        if end1 + problem.processing_times[jobs[i + 1]] != end2:
            et_global_solution.block_lasts.append(i)
            et_global_solution.block_endtimes.append(end1)
            et_global_solution.block_objs.append(block_obj)
            et_global_solution.block_starttimes.append(
                end2 - problem.processing_times[jobs[i + 1]])
            block_obj = 0
        if i == n - 2:
            et_global_solution.block_lasts.append(i + 1)
            et_global_solution.block_endtimes.append(end2)
            block_obj += opt_model.solution.get_value("earliness_of_job_" + str(i + 1)) * problem.earliness_penalties[
                jobs[i + 1]] + opt_model.solution.get_value("tardiness_of_job_" + str(i + 1)) * \
                         problem.tardiness_penalties[jobs[i + 1]]
            et_global_solution.block_objs.append(block_obj)
    return et_global_solution
Esempio n. 5
0
    def __init__(self, bids):

        self.bids = bids  # list of numpy nxd arrays representing elicited bundle-value pairs from each bidder. n=number of elicited bids, d = number of items + 1(value for that bundle).
        self.N = len(bids)  # number of bidders
        self.M = bids[0].shape[1] - 1  # number of items
        self.Mip = cpx.Model(name="WDP")  # cplex model
        self.K = [x.shape[0] for x in bids]  # number of elicited bids per bidder
        self.z = {}  # decision variables. z(i,k) = 1 <=> bidder i gets the kth bundle out of 1,...,K[i] from his set of bundle-value pairs
        self.x_star = np.zeros((self.N, self.M))  # optimal allocation of the winner determination problem
Esempio n. 6
0
    def __createModelCPLEX(self):
        self.model = cpx.Model(self.instanceName)
        print("CPLEX - Creating Variables...")
        #Variables
        for f in self.facilities:
            self.varFacilityAssignment[f.index] = self.model.binary_var(
                name="facility-%s" % f.index)
            for c in self.customers:
                #Demand is binary because each customer must be served by exaclty one facility
                self.varCustomerAssignment[f.index,
                                           c.index] = self.model.binary_var(
                                               name="demand-(%s,%s)" %
                                               (f.index, c.index))

        print("CPLEX - Creating Constraints...")
        #Constraints
        #Ensure all customers are assigned to one facility
        for customer in self.customers:
            self.model.add_constraint(ct=self.model.sum(
                self.varCustomerAssignment[facility.index, customer.index]
                for facility in self.facilities) == 1,
                                      ctname="Demand(%s)" % customer.index)

        #Ensure the demand carried by the facility is at most its capacity
        for facility in self.facilities:
            self.model.add_constraint(
                ct=self.model.sum(self.varCustomerAssignment[facility.index,
                                                             customer.index] *
                                  customer.demand
                                  for customer in self.customers) <=
                facility.capacity * self.varFacilityAssignment[facility.index],
                ctname="Capacity(%s)" % facility.index)

        #Strong Formulation
        for facility in self.facilities:
            for customer in self.customers:
                self.model.add_constraint(
                    ct=self.varCustomerAssignment[facility.index,
                                                  customer.index] <=
                    facility.capacity *
                    self.varFacilityAssignment[facility.index],
                    ctname="Strong(%s,%s)" % (facility.index, customer.index))
                self.model.add_constraint(
                    self.varCustomerAssignment[facility.index,
                                               customer.index] >= 0,
                    ctname="Strong2(%s,%s)" % (facility.index, customer.index))

        print("CLPEX - Creating Objective Function...")
        #Objective Function
        objective = self.model.sum(
            self.varFacilityAssignment[facility.index] * facility.setup_cost
            for facility in self.facilities) + self.model.sum(
                Preprocessing.getEuclideanDistance(facility.location,
                                                   customer.location) *
                self.varCustomerAssignment[facility.index, customer.index]
                for facility in self.facilities for customer in self.customers)
        self.model.minimize(objective)
Esempio n. 7
0
def time_block(memoBT, jobs, first, last, problem):
    para_due_dates = problem.due_dates
    para_processing_times = problem.processing_times
    para_earliness_penalties = problem.earliness_penalties
    para_tardiness_penalties = problem.tardiness_penalties
    if memoBT[first][last].block_start >= 0:
        return memoBT[first][last].block_start, memoBT[first][last].block_end, memoBT[first][last].et_penalty,0

    # Create model
    opt_model = cpx.Model(name="Block Timing Model")
    opt_model.parameters.simplex.tolerances.feasibility = 0.0000001

    n = last - first + 1
    # Decision parameters
    end_times = opt_model.continuous_var_list(n, lb=0, ub=utils.BIG_NUMBER, name="end_time_of_job_%s")
    earlis = opt_model.continuous_var_list(n, lb=0, ub=utils.BIG_NUMBER, name="earliness_of_job_%s")
    tardis = opt_model.continuous_var_list(n, lb=0, ub=utils.BIG_NUMBER, name="tardiness_of_job_%s")

    # constraint
    opt_model.add_constraints_(
        end_times[i] + para_processing_times[jobs[first + i + 1]] == end_times[i + 1] for i in range(n - 1)
    )

    # constraint
    opt_model.add_constraints_(
        end_times[i] + earlis[i] - tardis[i] == para_due_dates[jobs[first + i]] for i in range(n)
    )

    # Objective function
    objective_function = opt_model.sum(
        earlis[i] * para_earliness_penalties[jobs[first + i]] + tardis[i] * para_tardiness_penalties[jobs[first + i]]
        for i in range(n)
    )

    # minimize objective
    opt_model.minimize(objective_function)
    # print("**************** Block Timing ****************")
    # opt_model.print_information()
    start = time.process_time()
    opt_model.solve()
    end = time.process_time()
    cplex_time = end - start

    block_end = opt_model.solution.get_value("end_time_of_job_" + str(n - 1))
    block_start = opt_model.solution.get_value("end_time_of_job_0") - para_processing_times[jobs[first]]
    et_penalty = opt_model.solution.get_objective_value()

    memoBT[first][last].block_start = block_start
    memoBT[first][last].block_end = block_end
    memoBT[first][last].et_penalty = et_penalty

    # print("block start:", block_start)
    # print("block end:", block_end)
    # print("E/T penalty:", et_penalty)
    # print("**************** Block Timing Finished ****************")
    return block_start, block_end, et_penalty,cplex_time
Esempio n. 8
0
def init_problem(data, neginf=-1e5):

    model = cpx.Model(name="MIP Model")

    T = data['T']
    NS = data['num_slopes']
    EC, ED = (1 / data['efc']), data['efd']
    LOAD = data['load']

    prices = data['price'][:, :data['num_slopes']]
    offsets = build_price(data['price'], data['num_slopes'])

    t_vars = {
        j: model.continuous_var(lb=neginf, name="t_{0}".format(j))
        for j in range(T)
    }

    c_vars = {
        t: model.continuous_var(lb=0, ub=data['dmax'], name="c_{0}".format(t))
        for t in range(T)
    }
    d_vars = {
        t: model.continuous_var(lb=0, ub=data['dmin'], name="d_{0}".format(t))
        for t in range(T)
    }

    CUB = data['bmax'] - data['charge']
    CLB = data['bmin'] - data['charge']

    cons_charge_ub = {
        t: model.add_constraint(ct=model.sum(c_vars[j] - d_vars[j]
                                             for j in range(t + 1)) <= CUB,
                                ctname="charge_ub_{0}".format(t))
        for t in range(T)
    }

    cons_charge_lb = {
        t: model.add_constraint(ct=model.sum(c_vars[j] - d_vars[j]
                                             for j in range(t + 1)) >= CLB,
                                ctname="charge_lb_{0}".format(t))
        for t in range(T)
    }

    cons_cost = {(t, s): model.add_constraint(
        ct=prices[t][s] * model.sum(EC * c_vars[t] - ED * d_vars[t]) -
        t_vars[t] <= -offsets[t][s] - prices[t][s] * LOAD[t],
        ctname="cost_{0}_{1}".format(t, s))
                 for t in range(T) for s in range(NS)}

    objective = model.sum(t_vars[j] for j in range(T))
    model.minimize(objective)

    CONS = [cons_charge_ub, cons_charge_lb, cons_cost]
    VARS = [t_vars, c_vars, d_vars]

    return model, CONS, VARS
Esempio n. 9
0
def asign_charges(batuse):
    """
    Determines how to assign the different
    charging points of the battery to the 
    discharging points of the battery using 
    the LP formulation.
    
    Parameters
    -----------
    
    batuse: np.ndarray
        An array with the battery action. Positive if
        charging, negative if discharging.
        
    Returns
    -------------
    asig : np.ndarray
        Assignament of the different charing points to the discharing
        times. 
    """

    opt_model = cpx.Model(name="Battery")

    N = batuse.shape[0]
    set_I = range(0, N)
    set_J = range(0, N)

    y = {j: -min(0, batuse[j]) for j in set_J}
    z = {i: max(0, batuse[i]) for i in set_I}

    x_vars = {(i, j): opt_model.continuous_var(lb=0.0,
                                               name="x_{0}_{1}".format(i, j))
              for i in set_I for j in set_J}

    constraint1 = {
        j: opt_model.add_constraint(ct=opt_model.sum(x_vars[i, j]
                                                     for i in set_I
                                                     if i < j) == y[j],
                                    ctname="constraint1_{0}".format(j))
        for j in set_J
    }

    constraint2 = {
        i: opt_model.add_constraint(ct=opt_model.sum(x_vars[i, j]
                                                     for j in set_J) <= z[i],
                                    ctname="constraint2_{0}".format(i))
        for i in set_I
    }

    objective = opt_model.sum(0)

    opt_model.minimize(objective)
    opt_model.solve()

    return x_vars
Esempio n. 10
0
 def __init__(self, bids):
     # list of numpy nxd arrays representing bundle-value pairs from each bidder. 
     # n=number of elicited bids + 1(the number of units for each item)
     # d = number of items + 1(value for that bundle).
     self.bids = bids  
     self.N = len(bids)-1  # number of bidders
     self.M = bids[0].shape[1] - 1  # number of items
     self.Mip = cpx.Model(name="WDP")  # cplex model
     self.z = {}  # decision variables. z(i) = 1 <=> bidder i gets the bundle
     self.x_star = np.zeros((self.N, self.M))  # optimal allocation of the wdp
     self.z_star = np.zeros((1,self.N))
Esempio n. 11
0
 def __init__(self,
              area_shape,
              amount_of_drones_used,
              location_charging_points,
              minimum_charge,
              name,
              logging_obj,
              scanning_time,
              scanning_consumption,
              plotting=True,
              area_length=3,
              area_width=3,
              resolution=1):
     # Define instance variables
     self.name = name  # Name of the excel sheet in which it saves
     self.wb = logging_obj  # Name of the object so everything is logged in the same file
     self.area_shape = area_shape  # Which shape is chosen by the user
     self.area_width = area_width  # Defines the width in case a rectangle is chosen
     self.area_length = area_length  # Defines the length in case a rectangle is chosen
     self.resolution = resolution  # Resolution of the points in case a rectangle is chosen
     self.drone_amount = amount_of_drones_used  # Amount of the drones used to run the optimization
     self.cm = cpx.Model('Modelname')  # Name of the gurobi model
     self.area_coord = [
     ]  # List in list, [node number, x_location node, y_location node]
     self.i = 0  # i is the name of the node
     self.x_vars = {
     }  # Dictionary with the links, [node i, node j, drone k]
     self.result = []  # List with the output of the optimization
     self.q = {}  # Dictionary with charges, [node i, drone k]
     self.time = {}  # Dictionary with the time, [node i, drone k]
     self.M = 1000  # Big M value, slack
     self.value_list = [
     ]  # List in list which contains the possible nodes it can reach from another node
     self.new_value_list = []  # value_list but rearranged
     self.amount_of_links = 0  # Counter which counts the total amount of links (including all the drones)
     self.obj_time = 0  # Represents the time component of the objective function
     self.obj_dist = 0  # Represents the distance component of the objective function
     self.obj_charge = 0  # Represents the charge component of the objective function
     self.obj_function = 0  # Represents the objective function
     self.location_charg_point = location_charging_points  # List in list with the location of the charging points
     self.amount_of_charg_stat = len(
         location_charging_points)  # Amount of charging points used
     self.charge_scan = scanning_consumption  # Battery charge it takes to scan a landmark
     self.scan_time = scanning_time  # Time it takes to scan a landmark
     self.min_charge = minimum_charge  # Minimum charge it needs to have at all time
     self.charge_nodes = [0]  # Node 0 is always a charge node
     self.charge_constant = 1.43  # Battery consumption per kilometer in cruise
     self.time_constant = 0.857  # Time it takes to fly 1 kilometer in cruise
     self.charge_time = 1.32  # Calculated time it takes to charge 1 percent in minutes
     self.amount_visits_charg = 2  # Amount a drone can visit a charging point
     self.amount_of_landmarks = 0  # Amount of landmarks which need to be visited
     self.landing_takeoff_penalty = 8  # This value is chosen to account for the landing and takeoff time etc.
     self.plotting = plotting  # Regulates if plotting is on or not.
Esempio n. 12
0
    def __init__(self,
                 lower_search_bounds: np.array,
                 upper_search_bounds: np.array,
                 big_m: int = 20,
                 upper_bound: int = 10,
                 time_limit: Union[int, None] = None,
                 relative_gap: Union[float, None] = None,
                 integrality: Union[float, None] = None,
                 log_ouput: bool = False,
                 tighten_IA: bool = False) -> NoReturn:
        """default constructor

        :param lower_search_bounds: lower bounds of the search area must have same dimensions as the sample x space)
        :param upper_search_bounds: upper bounds of the search area must have same dimensions as the sample x space)
        :param big_m: M from the big M-constraint
        :param upper_bound: upper bounds for tighten_bounds_IA
        :param time_limit: time limit for the cplex solver
        :param relative_gap: relative gap limit for the cplex solver
        :param integrality: integrality limit for cplex solver
        :param log_ouput: log the cplex optimization logs
        :param tighten_IA: integrality limit for cplex solver
        """
        super().__init__(lower_search_bounds, upper_search_bounds)
        self.upper_bound = upper_bound
        self.y_main: dict = {
        }  # vector denoting which node in the corresponding layer is active
        self.z_main: dict = {
        }  # positive components of the output value o of each layer
        self.s_main: dict = {
        }  # slack variable representing absolute value of the negative components of output o
        self.y_side: dict = {
        }  # vector denoting which node in the corresponding layer is active
        self.z_side: dict = {
        }  # positive components of the output value o of each layer
        self.s_side: dict = {
        }  # slack variable representing absolute value of the negative components of output o
        self.big_l = big_m
        self.cpx_MIP = cpx.Model("NN_MIP")
        self.layers_main = None
        self.layers_side = None
        self.upper_bounds_z_main: dict = {}
        self.upper_bounds_s_main: dict = {}
        self.upper_bounds_z_side: dict = {}
        self.upper_bounds_s_side: dict = {}
        self.upper_search_bounds = upper_search_bounds
        self.lower_search_bounds = lower_search_bounds
        self.Model = None
        self.time_limit = time_limit
        self.relative_gap = relative_gap
        self.integrality = integrality
        self.log_ouput = log_ouput
        self.tighten_IA = tighten_IA
Esempio n. 13
0
def lp_max(coef, budget):
    """
    Solve min_a coef.A + intercept, subject to sum A = budget.
    :return:
    """
    L = len(coef)
    model = dcpm.Model(name="lp_max")
    vars = {i: model.binary_var(name="trt_{}".format(i)) for i in range(L)}
    obj = model.sum(vars[i] * float(coef[i]) for i in range(L))
    model.add_constraint(model.sum(vars[i] for i in range(L)) == budget)
    model.minimize(obj)
    sol = model.solve(url=None, key=None)
    argmax = np.array([int(sol.get_value(f'trt_{i}')) for i in range(L)])
    return argmax
Esempio n. 14
0
 def solve(self, adj):
     u, s = np.shape(adj)
     U = range(1, u + 1)
     S = range(1, s + 1)
     opt_model = cpx.Model(name="SCP Model")
     x_vars = {i: opt_model.binary_var(name="x_{0}".format(i)) for i in S}
     constraints = {j: opt_model.add_constraint(ct=opt_model.sum(adj[j - 1, i - 1] * x_vars[i] for i in S) >= 1, ctname="constraint_{0}".format(j)) for j in U}
     objective = opt_model.sum(x_vars[i] for i in S)
     opt_model.minimize(objective)
     opt_model.solve()
     opt_df = pd.DataFrame.from_dict(x_vars, orient="index", columns=["variable_object"])
     opt_df.reset_index(inplace=True)
     opt_df["solution_value"] = opt_df["variable_object"].apply(lambda item: item.solution_value)
     return opt_df
Esempio n. 15
0
def best_attack(x, S, t, k):
    start_program = time.time()

    m, n = S.shape

    model = cpx.Model(name="LP Model")

    a = {i: model.binary_var(name="a_" + str(i)) for i in range(n)}

    z = {j: model.binary_var(name="z_" + str(j)) for j in range(m)}

    v = {(i, j): model.binary_var(name="v_" + str(i) + "_" + str(j))
         for i in range(n) for j in range(m)}

    model.add_constraint(model.sum(a[i] for i in range(n)) <= k)

    # for j in range(m):
    #     s = S[j]
    #     model.add_constraint( model.sum( z[j] * t[i] * (1 - s[i]) * a[i] for i in range(n)) >= 0 )

    for j in range(m):
        s = S[j]
        model.add_constraint(
            model.sum(z[j] * t[i] - (1 - s[i]) * v[i, j] * t[i]
                      for i in range(n)) >= 0)

    for i in range(n):
        for j in range(m):
            model.add_constraint(v[i, j] <= z[j])
            model.add_constraint(v[i, j] <= a[i])
            model.add_constraint(v[i, j] >= z[j] + a[i] - 1)

    objective = model.sum((1 - z[j]) * x[j] for j in range(m))

    model.minimize(objective)

    # model.print_information()
    # print()

    model.solve()

    a_return = []
    for i in range(n):
        value = int(a[i])
        a_return.append(value)

    return np.array(a_return).reshape((1, np.array(a_return).shape[0]))
Esempio n. 16
0
    def new_model(self, mdl=None, name=None):
        """ Creates a new model 

        Parameters
        ----------
            mdl : :obj:`docplex.mp.model.Model`
                Cplex model (default None)
            name : string
                Name of the model (default None)

        Returns
        -------
            Model : :obj:`docplex.mp.model.Model`
                Cplex model

        """
        return cpx.Model()
Esempio n. 17
0
def best_defense(y, A, t, l):
    start_program = time.time()

    m, n = A.shape

    model = cpx.Model(name="LP Model")

    s = {i: model.binary_var(name="s_" + str(i)) for i in range(n)}

    z = {j: model.binary_var(name="z_" + str(j)) for j in range(m)}

    v = {(i, j): model.binary_var(name="v_" + str(i) + "_" + str(j))
         for i in range(n) for j in range(m)}

    model.add_constraint(model.sum(s[i] for i in range(n)) <= l)

    for j in range(m):
        a = A[j]
        model.add_constraint(
            model.sum(z[j] * t[i] * (1 - a[i]) + v[i, j] * t[i] * a[i] + z[j]
                      for i in range(n)) <= 0)

    for i in range(n):
        for j in range(m):
            model.add_constraint(v[i, j] <= z[j])
            model.add_constraint(v[i, j] <= s[i])
            model.add_constraint(v[i, j] >= z[j] + s[i] - 1)

    objective = model.sum(z[j] * y[j] for j in range(m))

    model.maximize(objective)

    # model.print_information()
    #  print()

    model.solve()

    s_return = []
    for i in range(n):
        value = int(s[i])
        s_return.append(value)

    return np.array(s_return).reshape((1, np.array(s_return).shape[0]))
Esempio n. 18
0
    def _initSolver(self):

        self.orCntIndex = 0

        self.nr_vms = self.problem.nrVM
        self.nr_comps = self.problem.nrComp
        self.offers_list = self.problem.offers_list

        ### Option: default-s-b
        self.model = cpx.Model(name="Manuver Model")
        self.model.parameters.timelimit.set(2400.0)
        ### Option: reduce-set-lpmethod-default-s-b:
        # http://www-eio.upc.es/lceio/manuals/cplex-11/html/refparameterscplex/refparameterscplex103.html#271905
        #self.model.parameters.preprocessing.reduce.set(1)
        # print(self.model.parameters.lpmethod)
        # self.model.parameters.lpmethod =3
        # print(self.model.parameters.lpmethod)
        ### sym breaking options
        ### Option: 0 no-s-b
        #self.model.parameters.preprocessing.symmetry = 0
        ### Option: 1 Exert a moderate level of symmetry breaking
        #self.model.parameters.preprocessing.symmetry = 1
        # ### Option: 2 Exert an aggressive level of symmetry breaking
        #self.model.parameters.preprocessing.symmetry = 2
        # ### Option: 3 Exert a very aggressive level of symmetry breaking
        #self.model.parameters.preprocessing.symmetry = 3
        # ### Option: 4 Exert a highly aggressive level of symmetry breaking
        #self.model.parameters.preprocessing.symmetry = 4
        # ### Option: 5 Exert an extremely aggressive level of symmetry breaking
        self.model.parameters.preprocessing.symmetry = 5

        #0-default CPX_ALG_AUTOMATIC
        #2-CPX_ALG_DUAL
        #3-CPX_ALG_NET

        # CPXPARAM_Preprocessing_Reduce
        # 1
        # CPXPARAM_MIP_Tolerances_AbsMIPGap
        # 0
        # CPXPARAM_MIP_Tolerances_MIPGap
        # 0

        self._define_variables()
Esempio n. 19
0
    def __init__(
            self,
            demand=600,  # veh / hr / lane
            sat_flow_rate=1800,  # veh / hr / lane
            flow_rate_reduction=1,
            g_min=6,  # sec
            g_max=20,  # sec
            time_step=2,  # sec / timestep
            time_range=30,  # timesteps (for ease of gauging the program's size)
            r_left=0.25,
            r_through=0.5,
            r_right=0.25,
            alpha=1,
            preload=None,
            model_name='Base Extended Model'):

        self.model_name = model_name
        self.model = cpx.Model(name=self.model_name)

        # Convert all units from seconds to timesteps
        self.time_step = time_step
        self.time_range = time_range

        if (isinstance(demand, int)):
            demand = list([demand] * 4)
        elif (isinstance(demand, tuple)):
            if (len(demand) == 2):
                demand = list(demand) + list(demand)
            else:
                demand = list(demand)

        self.sat_flow_rate = (float)(sat_flow_rate * time_step) / (
            3600)  # veh / timesteps / lane
        self.demand = [(float)(x * time_step) / (3600)
                       for x in demand]  # veh / timesteps / lane
        self.g_min = g_min / time_step  # timesteps
        self.g_max = g_max / time_step  # timesteps
        self.cell_length = self.cell_length * time_step  # ft (scaled)

        self.turn_ratios = [r_left, r_through, r_right]
        self.flow_rate_reduction = flow_rate_reduction
        self.alpha = alpha
        self.preload = preload
Esempio n. 20
0
def create_master_problem(J, N_T, N, T, q_true, pi_graph, weight_reg_long_path = 0):
    """
    Create Master Problem model

    4 step Master Problem in the first iteration, 2 step in the continuous iteration

    :param J: list
        J parameter Master Problem
    :param N_T: list
        list of tuple (i_n,t_m), parameter Master Problem
    :param N: list
        N parameter Master Problem
    :param T: list
        T parameter Master Problem
    :param q_true: dict
        q_true parameter Master Problem
    :param pi_graph: list
        list of paths as input pool of Master Problem
    :param weight_reg_long_path: int
        const weight if want to add regularizer that increase search long_path(with great contribution).
        I scenario see doc.
    :return: Model
        Master Problem model
    :return: dict
        dict of (node,time step) that appear in a specific path (identified by index)
    :return: var
        x parameter Master Problem
    :return: var
        e parameter Master Problem
    """
    mld = cplex.Model('Master problem')
    x = mld.continuous_var_dict(J, lb=0, name='x')
    e = mld.continuous_var_dict(N_T, lb=0, name='e')

    paths_by_node = build_master_problem_contraints(pi_graph, mld, x, e, q_true)
    if weight_reg_long_path != 0:
        cotruire espressione e sistemare concatenazione
        #mld.minimize(mld.sum(e[i, t]) + weight_reg_long_path*x[j] for i in N for t in T for j in paths_by_node[i, t]))
    else:
        mld.minimize(mld.sum(e[i, t] for i in N for t in T))

    return mld, paths_by_node, x, e
Esempio n. 21
0
    def find_initial_sol(self, Nmin, Nmax):
        """
        Search for an unconstrained solution to warmstart the solver
        """
        print("Doing init with warmstart")
        OP_initial = cpx.Model(name="Wind Farm Layout Warmstart",
                               log_output=True)
        x_vars = {(i): OP_initial.binary_var(name="x_{0}".format(i))
                  for i in self.setV}
        OP_initial.add_constraint(
            OP_initial.sum(x_vars[i] for i in self.setV) <= Nmax)
        OP_initial.add_constraint(
            OP_initial.sum(x_vars[i] for i in self.setV) >= Nmin)
        for cnt in range(0, self.n):
            for el in self.setE[cnt]:
                OP_initial.add_constraint(x_vars[cnt] + x_vars[el] <= 1)
        obj = OP_initial.sum(self.Pi * x_vars[i] for i in self.setV)
        OP_initial.maximize(obj)
        OP_initial.solve()
        self.initial_sol = [
            OP_initial.solution.get_value(x_vars[element])
            for element in self.setV
        ]

        initial_sol_indices = []
        cnt = 0
        for element in self.setV:
            if OP_initial.solution.get_value(x_vars[element]) == 1:
                initial_sol_indices.append(cnt)
            cnt += 1

        # save this
        filename = "wfl_initial_sol_" + str(self.axx) + "_" + str(
            self.axy) + ".npy"
        with open(os.path.join(self.dir_sol, filename), "wb") as sol_file:
            np.save(sol_file, initial_sol_indices)

# In[130]:


for obj in OD_infor:
    obj.find_sp(nx.dijkstra_path(X,obj.origin,obj.destination,weight='length'))
    obj.find_sd(nx.dijkstra_path_length(X,obj.origin,obj.destination,weight='length'))
    obj.vector_p();


# In[153]:


import docplex.mp.model as cpx
opt_model = cpx.Model(name="MIP Model")
b_v_x = opt_model.binary_var_list(338, name='x')
b_v_y = opt_model.binary_var_list(len(OD_infor)+1, name='y')


p = 15;

for obj in OD_infor:
    opt_model.add_constraint(opt_model.sum(opt_model.scal_prod(b_v_x,obj.v_p)) >= b_v_y[obj.number])
opt_model.add_constraint(opt_model.sum(b_v_x) <= p)
opt_model.maximize(opt_model.scal_prod(b_v_y[1:],df_r[4]))


# In[154]:

Esempio n. 23
0
    def match(self, X, Y, storeDistance=False):
        # Take the two graphs - they have already the same size

        self.X = X
        self.Y = Y
        if (self.X.nodes() == 1 and self.Y.nodes() == 1):
            print("No Edges")
            self.f = list(self.Y.x.keys())[0][0]
            return
        nX = self.X.nodes()
        # set of non-zero nodes (i,i) that are in X or in Y
        # note. assuming that if there is an edge (i,j), both i and j have non-zero attribute
        isetn = set((i, j) for ((i, j), y) in self.X.x.items() if y != [0]
                    if i == j).union(
                        set((i, j) for ((i, j), y) in self.Y.x.items()
                            if y != [0] if i == j))
        isetn = sorted(isetn)
        # set of indices i of non-zero nodes (i,i) that are in X or in Y
        isetnn = [i for (i, j) in isetn]
        # set of edges btw non-zero nodes that are in X or in Y
        isete = [(i, j) for i in isetnn for j in isetnn if i != j]

        # building up the matrix of pairwise distances:
        #   matrix of pairwise distances btw nodes:
        x_vec_n = self.X.to_vector_with_select_nodes(isetn)
        y_vec_n = self.Y.to_vector_with_select_nodes(isetn)
        gas_n = pd.DataFrame(pairwise_distances(x_vec_n,
                                                y_vec_n,
                                                metric=self.metricNode),
                             columns=y_vec_n.index,
                             index=x_vec_n.index)
        del x_vec_n, y_vec_n

        #   matrix of pairwise distances btw edges:
        try:
            x_vec_e = self.X.to_vector_with_select_edges(isete)
            y_vec_e = self.Y.to_vector_with_select_edges(isete)
            gas_e = pd.DataFrame(pairwise_distances(x_vec_e,
                                                    y_vec_e,
                                                    metric=self.metricEdge),
                                 columns=y_vec_e.index,
                                 index=x_vec_e.index)
            del x_vec_e, y_vec_e
        except:
            # degenerate graphs
            if self.X.edge_attr + self.Y.edge_attr == 0:  # if both the two graphs have no edge
                gas_e = pd.DataFrame()
            if self.X.edge_attr * self.Y.edge_attr == 0:  # if one of the two graphs has no edge
                self.X.edge_attr = self.Y.edge_attr = max(
                    self.X.edge_attr, self.Y.edge_attr)
                x_vec_e = self.X.to_vector_with_select_edges(isete)
                y_vec_e = self.Y.to_vector_with_select_edges(isete)
                gas_e = pd.DataFrame(pairwise_distances(
                    x_vec_e, y_vec_e, metric=self.metricEdge),
                                     columns=y_vec_e.index,
                                     index=x_vec_e.index)
                del x_vec_e, y_vec_e

        # optimization model:
        # initialize the model
        # opt_model = cpx.Model(name="HP Model")
        opt_model = cpx.Model(name="HP Model",
                              ignore_names=True,
                              checker='off')  # faster

        # list of binary variables: 1 if i match j, 0 otherwise
        # x_vars is n x n
        # x_vars = {(i, u): opt_model.binary_var(name="x_{0}_{1}".format(i, u))
        #           for i in isetnn
        #           for u in isetnn}
        x_vars = opt_model.binary_var_matrix(isetnn, isetnn, name="x")

        # constraints - imposing that there is a one to one correspondence between the nodes in the two networks
        opt_model.add_constraints_(
            (opt_model.sum(x_vars[i, u] for i in isetnn) == 1 for u in isetnn),
            (f"constraint_r{u}" for u in isetnn))

        opt_model.add_constraints_(
            (opt_model.sum(x_vars[i, u] for u in isetnn) == 1 for i in isetnn),
            (f"constraint_c{i}" for i in isetnn))

        # objective function - sum the distance between nodes and the distance between edges
        # e.g. (i,i) is a node in X, (u,u) is a node in Y, (i,j) is an edge in X, (u,v) is an edge in Y.
        objective = opt_model.sum(
            x_vars[i, u] * gas_n.loc[f'({i}, {i})', f'({u}, {u})']
            for i in isetnn for u in isetnn) + opt_model.sum(
                x_vars[i, u] * x_vars[j, v] *
                gas_e.loc[f'({i}, {j})', f'({u}, {v})']
                for (i, j) in isete  # for i in isetnn for j in isetnn if j!=i
                for (u, v) in isete)  # for u in isetnn for v in isetnn if v!=u

        # Minimizing the distances as specified in the objective function
        opt_model.minimize(objective)
        # Finding the minimum
        opt_model.solve()
        if storeDistance:
            self.distance = opt_model.solution.get_objective_value()

        # Save in f the permutation: <3
        ff = [k for k, z in x_vars.items() if z.solution_value == 1]
        if len(ff) < nX:
            # if the number of nodes involved in the matching, i.e. non-zero nodes, is smaller than the total,
            # set up the permutation vector in the proper way
            # e.g. X nodes 1,3 Y nodes 1,4 -> isetnn={1,3,4} -> len(x_vars>0)=3
            # -> i want to avoid st. like f=[4,1,3] because i want len(f)=nX
            self.f = list(range(nX))
            for (i, u) in ff:
                self.f[i] = u
        else:
            self.f = [u for (i, u) in ff]

        try:
            del gas_n, gas_e
        except AttributeError:
            pass

        del opt_model
Esempio n. 24
0
I_0: initial_inventory
c_t: unit production cost in month t
d_t: demand of month t

Variables:
X_t: Amount produced in month t
I_t: Inventory at the end of period t

Constraints:
Inventory Constraints: I_{t-1} + X_t - d_t = I_t
Capacity Constraints: X_t <= p

Objective: Min Sum(h*I_t + c_t*X_t)
"""

model = cpx.Model('prod_planning')

start = time()

# ================== Decision variables ==================
production_variables = model.continuous_var_dict(input_df_dict['input_data'].index, name="X")
inventory_variables = model.continuous_var_dict(input_df_dict['input_data'].index, name="I")

# Alternative way of creating the variables
# production_variables = {index: model.continuous_var(name='X_' + str(row['period']))
#                         for index, row in input_df_dict['input_data'].iterrows()}
#
# inventory_variables = {index: model.continuous_var(name='I_' + str(row['period']))
#                        for index, row in input_df_dict['input_data'].iterrows()}

logger.debug("var declaration time: {:.6f}".format(time() - start))
Esempio n. 25
0
def fit_additive_approx_with_solver(U1, U2, weight=1., residual_weight=1.):
    nA1, nA2 = U1.shape
    nA = nA1 * nA2

    model = dcpm.Model(name='model')

    vars = {}

    # Add variables for each player
    for i in range(nA1):
        vars[(0, 0, i)] = model.continuous_var(name=f'{(0, 0, i)}', lb=-2)
        vars[(1, 0, i)] = model.continuous_var(name=f'{(1, 0, i)}')
        for j in range(nA2):
            if i == 0:
                vars[(0, 1, j)] = model.continuous_var(name=f'{(0, 1, j)}',
                                                       lb=-2)
                vars[(1, 1, j)] = model.continuous_var(name=f'{(1, 1, j)}',
                                                       lb=-2)
            vars[(2, i, j)] = model.continuous_var(name=f'{(2, i, j)}', lb=0)
            # vars[(3, i, j)] = model.continuous_var(name=f'{(3, i, j)}', lb=0)
            # vars[(4, i, j)] = model.continuous_var(name=f'{(4, i, j)}', lb=0)

            # Dummy variables for l1 penalty
            vars[(5, i, j)] = model.continuous_var(name=f'{(5, i, j)}', lb=0)
            vars[(6, i, j)] = model.continuous_var(name=f'{(6, i, j)}', lb=0)

    cost1 = model.sum(
        (U1[i, j] - vars[(0, 0, i)] - vars[(0, 1, j)] - vars[(2, i, j)])**2
        for i in range(nA1) for j in range(nA2))
    cost2 = model.sum(
        (U2[i, j] - vars[(1, 1, i)] - vars[(1, 0, j)] - vars[(2, i, j)])**2
        for i in range(nA1) for j in range(nA2))

    # cost3 = model.sum(vars[2, i, j]**2 for i in range(nA1) for j in range(nA2))
    cost3 = model.sum(vars[5, i, j] + vars[6, i, j] for i in range(nA1)
                      for j in range(nA2))
    # cost4 = model.sum(vars[3, i, j]**2 for i in range(nA1) for j in range(nA2))
    # cost5 = model.sum(vars[4, i, j] ** 2 for i in range(nA1) for j in range(nA2))

    # Constraints for l1 dummy variables
    for i in range(nA1):
        for j in range(nA2):
            model.add_constraint(vars[5, i, j] - vars[6, i, j] -
                                 vars[2, i, j] == 0)

    model.minimize(cost1 + cost2 + weight * cost3)
    sol = model.solve(url=None, key=None)

    # Get variables
    U11_hat = np.zeros_like(U1).astype(float)
    U12_hat = np.zeros_like(U1).astype(float)
    U21_hat = np.zeros_like(U1).astype(float)
    U22_hat = np.zeros_like(U1).astype(float)
    U1_hat = np.zeros_like(U1).astype(float)

    for i in range(nA1):
        for j in range(nA2):
            U11_hat[i, j] = float(sol.get_value(f'{(0, 0, i)}'))
            U12_hat[i, j] = float(sol.get_value(f'{(0, 1, j)}'))
            U21_hat[i, j] = float(sol.get_value(f'{(1, 0, i)}'))
            U22_hat[i, j] = float(sol.get_value(f'{(1, 1, j)}'))
            U1_hat[i, j] = float(sol.get_value(f'{(2, i, j)}'))

    return U11_hat, U12_hat, U21_hat, U22_hat, U1_hat
Esempio n. 26
0
def solve_test1(n, m, r, s, f_cost, p_list, p_u, delta_k, beta, gamma_k, vp,
                ld, x_n, y_n, x_m, y_m):
    I = range(1, n + 1)
    K = range(1, m + 1)
    T = range(1, r + 1)
    L = range(1, s + 1)

    # vp, ld, x_n, y_n, x_m, y_m = preflist(n, m, r, s,)

    # [print("v_{0}_{1}_{2}=%d".format(i,k,t) % sum(l * 1 * vp[i, k, t, l] for l in L) ) for i in I for k in K for t in T]

    # breakpoint()
    delta = {k: delta_k
             for k in K
             }  # limit on the individual size of the charging stations
    gamma = {k: gamma_k for k in K}  # capacity of individual charging stations
    # c = {k: rnd.uniform(.6, 1) for k in K}  # installation cost of  individual charging stations
    c = {k: 1 for k in K}  # installation cost of  individual charging stations
    # print(c)
    v = {(i, k, t, l): vp[i, k, t, l]
         for i in I for k in K for t in T for l in L}  # preference list
    l_d = {(i, k): ld[i, k] * 1
           for i in I for k in K}  # lambda of the follower problem

    # big M's
    M = 1000
    M5 = 1000
    M6 = 1000

    prob = cpx.Model(name="EV Model")

    # primal leader and follower variables
    x = {(i, k, t): prob.binary_var(name="x_{0}_{1}_{2}".format(i, k, t))
         for i in I for k in K for t in T}
    # x = {(i, k, t): prob.continuous_var(lb=0, ub=1, name="x_{0}_{1}_{2}".format(i, k, t)) for i in I for k in K for t in T}
    y = {
        k: prob.integer_var(lb=0, ub=np.inf, name="y_{0}".format(k))
        for k in K
    }
    z = {k: prob.binary_var(name="z_{0}".format(k)) for k in K}
    p = {(k, t): prob.continuous_var(lb=0,
                                     ub=p_u,
                                     name="p_{0}_{1}".format(k, t))
         for k in K for t in T}

    # for i in I: # print v
    #  print(i)
    # for l in L:
    #     zd = {(i, k, t, l): v[i, k, t, l] for k in K for t in T}
    #    print(np.reshape(list(zd.values()), (m, r)))

    # dual follower variables
    pi = {(k, t): prob.continuous_var(lb=0,
                                      ub=None,
                                      name="pi_{0}_{1}".format(k, t))
          for k in K for t in T}
    phi = {(i, k, t):
           prob.continuous_var(lb=0,
                               ub=None,
                               name="phi_{0}_{1}_{2}".format(i, k, t))
           for i in I for k in K for t in T}
    rho = {
        i: prob.continuous_var(lb=-np.inf, ub=None, name="rho_{0}".format(i))
        for i in I
    }
    u = {(k, t): prob.binary_var(name="u_{0}_{1}".format(k, t))
         for k in K for t in T}

    # leader constraints
    con71 = {
        k: prob.add_constraint(ct=z[k] - prob.sum(x[i, k, t] for i in I
                                                  for t in T) <= 0,
                               ctname="con71_{0}".format(k))
        for k in K
    }
    con72 = {(k, t):
             prob.add_constraint(ct=p[k, t] - prob.sum(x[i, k, t] for i in I
                                                       for t in T) * p_u <= 0,
                                 ctname="con72_{0}_{1}".format(k, t))
             for k in K for t in T}
    con7b = {
        k: prob.add_constraint(ct=y[k] - delta[k] * z[k] <= 0,
                               ctname="con7b_{0}".format(k))
        for k in K
    }
    con7c = prob.add_constraint(ct=prob.sum(c[k] * y[k] for k in K) <= beta,
                                ctname="con7c")

    # follower KKT
    con7f = {(i, k, t): prob.add_constraint(
        ct=f_cost * p[k, t] + pi[k, t] + rho[i] + phi[i, k, t] >=
        -l_d[i, k] - prob.sum(l * p_list * v[i, k, t, l] for l in L),
        ctname="con7f_{0}_{1}_{2}".format(i, k, t))
             for i in I for k in K for t in T}
    # [print("v_{0}_{1}_{2} =  %d, con7f_{0}_{1}_{2} = %s".format(i, k, t,i,k,t) % (sum(l * p_list  * vp[i, k, t, l] for l in L), str(con7f[i,k,t]))) for i in I for k in K for t in T]
    con7g = {(i, k, t): prob.add_constraint(
        ct=f_cost * p[k, t] + l_d[i, k] + pi[k, t] + rho[i] + phi[i, k, t] +
        M * x[i, k, t] <= -prob.sum(l * p_list * v[i, k, t, l] for l in L) + M,
        ctname="con7g_{0}_{1}_{2}".format(i, k, t))
             for i in I for k in K for t in T}

    con7h = {
        (k, t):
        prob.add_constraint(ct=prob.sum(x[i, k, t]
                                        for i in I) - gamma[k] * y[k] <= 0,
                            ctname="con7h_{0}_{1}".format(k, t))
        for k in K for t in T
    }

    con7i = {(k, t): prob.add_constraint(
        ct=gamma[k] * y[k] - prob.sum(x[i, k, t]
                                      for i in I) + u[k, t] * M5 <= M5,
        ctname="con7i_{0}_{1}".format(k, t))
             for k in K for t in T}

    con7j = {(k, t): prob.add_constraint(ct=pi[k, t] - u[k, t] * M5 <= 0,
                                         ctname="con7j_{0}_{1}".format(k, t))
             for k in K for t in T}

    con7k = {
        i:
        prob.add_constraint(ct=prob.sum(x[i, k, t] for k in K for t in T) == 1,
                            ctname="con7k_{0}".format(i))
        for i in I
    }

    con7l = {(i, k, t):
             prob.add_constraint(ct=x[i, k, t] - prob.sum(v[i, k, t, l]
                                                          for l in L) <= 0,
                                 ctname="con7l_{0}_{1}_{2}".format(i, k, t))
             for i in I for k in K for t in T}

    con7m = {(i, k, t):
             prob.add_constraint(ct=phi[i, k, t] + M6 * x[i, k, t] <= M6 *
                                 (1 + prob.sum(v[i, k, t, l] for l in L)),
                                 ctname="con7m_{0}_{1}_{2}".format(i, k, t))
             for i in I for k in K for t in T}

    # con7s = {(i, k, t): prob.add_constraint(
    # ct=w_linear[i, k, t] -w[i, k, t] ** 2 - 0 <= 0,
    # ctname="con7s_{0}_{1}_{2}".format(i, k, t)) for i in I for k in K for t in T}
    # objective function
    objective = prob.sum(
        x[i, k, t] * p[k, t] for i in I for k in K
        for t in T) - 1 * prob.sum(x[i, k, t] for i in I for k in K
                                   for t in T) - 0 * prob.sum(c[k] * y[k]
                                                              for k in K)

    prob.maximize(objective)
    prob.print_information()
    # breakpoint()
    # prob.parameters.mip.tolerances.mipgap = 0.001
    # prob.parameters.timelimit = 500
    s1 = prob.solve(log_output=True)
    print(prob.get_solve_status())
    # prob.print_solution()
    print(s1.get_objective_value())
    x_val = s1.get_value_dict(x)
    y_val = s1.get_value_dict(y)
    p_val = s1.get_value_dict(p)
    z_val = s1.get_value_dict(z)
    [
        print("x_{0}_{1}_{2} = %d".format(i, k, t) % x_val[i, k, t]) for i in I
        for k in K for t in T if x_val[i, k, t] != 0
    ]
    [print("y_{0}=%d".format(k) % y_val[k]) for k in K if y_val[k] != 0]
    [print("z_{0}=%d".format(k) % z_val[k]) for k in K if z_val[k] != 0]
    [
        print("p_{0}_{1} = %f".format(k, t) % p_val[k, t]) for k in K
        for t in T if p_val[k, t] != 0
    ]

    # print(s)

    # plt.figure(figsize=(10, 5))
    img = mpimg.imread('user_cs.png')
    [
        plt.annotate("x_{0}_{1}_{2}".format(i, k, t),
                     (x_n[i] - 0.002, y_n[i] - 0.04)) for i in I for k in K
        for t in T if x_val[i, k, t] == 1
    ]
    [
        plt.annotate("y_{0} = %d".format(k) % y[k],
                     (x_m[k] - 0.002, y_m[k] - 0.04),
                     c='r') for k in K if y_val[k] != 0
    ]
    # plt.axis('equal')
    plt.savefig('user_cs_2level')
    plt.show(block=False)
    plt.close('user_cs_2level')
    return None
Esempio n. 27
0
#路径权值,默认为距离的平方
c_vars = {(i, j): math.pow(
    math.pow(position_vertex_list[i][0] - position_vertex_list[j][0], 2) +
    math.pow(position_vertex_list[i][1] - position_vertex_list[j][1], 2), 0.5)
          for i in range(num_vertex) for j in range(num_vertex)}
#各种集合
set_without_depot = range(1, num_vertex)
set_Vs_c = range(1, num_vertex)
set_V = range(num_vertex)
set_Vs = range(1, num_sdf + 1)
set_Vc = range(num_sdf + 1, num_vertex)
set_salesman = range(0, num_salesman)
set_group = range(0, num_group)
set_sdf_r_c = range(0, num_sdf)
#model
opt_model = cpx.Model(name="CSP Model")
#----------决策变量
x_vars = {(i, j): opt_model.integer_var(lb=0,
                                        ub=1,
                                        name="x_{0}_{1}".format(i, j))
          for i in set_V for j in set_V}
z_vars = {(i, j): opt_model.integer_var(lb=0,
                                        ub=1,
                                        name="z_{0}_{1}".format(i, j))
          for i in set_Vc for j in set_Vs}
u_vars = {(i, j):
          opt_model.integer_var(lb=0,
                                ub=len(responsible_salesman_list[j]) - 1,
                                name="u_{0}_{1}".format(i, j))
          for i in set_V for j in set_salesman
          if i in responsible_salesman_list[j]}
    def place_request_optimally(self, req):

        print("\n### OPTIMAL Placement module #################################################\n")

        if not os.path.isfile(CPLEX_PATH):
            raise RuntimeError('CPLEX does not exist ({})'.format(CPLEX_PATH))

        hosts = self.topology.nodes
        states = req.get_masters()
        replicas = req.get_replicas()

        opt_model = cpx.Model(name="Placement")

        # Binary variables  ###################################################################################
        print("Creating state mapping variables 1...")
        x_vars = {(h, s.id): opt_model.binary_var(name="x{0}{1}".format(h, s.id)) for h in hosts for s in states}

        print("Creating replica mapping variables 2...")
        y_vars = {(i, s.id): opt_model.binary_var(name="y{0}{1}".format(i, s.id)) for i in hosts for s in states}

        # Constraints #########################################################################################
        print("Creating constraints 1 - states can be mapped into only one server")
        for s in states:
            c_name = "c1_{}".format(s.id)
            opt_model.add_constraint(ct=opt_model.sum(x_vars[i, s.id] for i in hosts) == 1, ctname=c_name)

        print("Creating constraints 2 - replicas can be mapped into as many servers as many replicas exist")
        for s in states:
            c_name = "c2_{}".format(s.id)
            # print("State: {}\t Replica number:{}\t Replica instance:{}".format(s.id, s.replica_num,
            #                                                                    len(req.get_replicas_of_state(s))))
            # opt_model.add_constraint(
            #     ct=opt_model.sum(y_vars[i, s.id] for i in hosts) == len(req.get_replicas_of_state(s)), ctname=c_name)
            opt_model.add_constraint(
                ct=opt_model.sum(y_vars[i, s.id] for i in hosts) == s.replica_num, ctname=c_name)

        print("Creating constraints 3 - anti-affinity rules")
        for h in hosts:
            for s in states:
                c_name = "c3_{}_in_{}".format(s.id, h)
                opt_model.add_constraint(ct=(x_vars[h, s.id] + y_vars[h, s.id]) <= 1, ctname=c_name)

        print("Creating constraints 4 - server capacity constraint")
        for h in hosts:
            c_name = "c4_{}".format(h)
            opt_model.add_constraint(
                ct=opt_model.sum((x_vars[h, s.id] + y_vars[h, s.id]) * s.size for s in states) <=
                   self.topology.nodes[h]['capacity'],
                ctname=c_name)

        print("Creating Objective function...")

        def create_w():
            # init w
            w = {(k, s.id): 0 for k in hosts for s in states}
            for s in states:
                for k in hosts:
                    writers = s.writers
                    for i in writers:
                        if MasterController.get_host_of_function(i) == k:
                            w[k, s.id] += i.get_writer_rate_of_state(s)
            return w

        def create_f():
            # init f
            f = {(i, s.id): 0 for i in hosts for s in states}
            for s in states:
                for i in hosts:
                    writers = s.writers
                    for w in writers:
                        if MasterController.get_host_of_function(w) == i:
                            f[i, s.id] = 1
            return f

        def create_g():
            # init g
            g = {(i, s.id): 0 for i in hosts for s in states}
            for s in states:
                for i in hosts:
                    readers = s.readers
                    for r in readers:
                        if MasterController.get_host_of_function(r) == i:
                            g[i, s.id] = 1
            return g

        def create_p():
            # init p
            p = {(i, s.id): 0 for i in hosts for s in states}
            for s in states:
                for i in hosts:
                    readers = s.readers
                    for r in readers:
                        if MasterController.get_host_of_function(r) == i:
                            p[i, s.id] += r.get_reader_rate_of_state(s)
            return p

        w = create_w()
        f = create_f()
        g = create_g()
        p = create_p()

        # ===============================================================================================================
        readers_hosts = dict()
        for s in states:
            readers_hosts.update({s.id: [MasterController.get_host_of_function(r) for r in s.readers]})

        update_cost = sum(sum(
            x_vars[i, s.id] * y_vars[j, s.id] * MasterController.get_min_delay_between_hosts(i, j) for i in hosts for j
            in hosts) * sum(w[k, s.id] for k in hosts) for s in states)

        def get_max_expression(state):

            max_expression = opt_model.max([opt_model.logical_and(x_vars[(i, state.id)], y_vars[
                (j, state.id)]) * MasterController.get_min_delay_between_hosts(i, j) * sum(
                w[(k, state.id)] for k in hosts) for i in hosts for j in hosts if i != j])

            return max_expression

        update_cost = sum(get_max_expression(s) for s in states)
        # update_cost = 0

        write_cost = sum(
            x_vars[i, s.id] * f[j, s.id] * w[j, s.id] * MasterController.get_min_delay_between_hosts(i, j) for i in
            hosts for j in hosts for s in states)

        def delta_cost(host_i, state):
            # FIXME: use a dynamic number instead of the 100 below
            min_delta = opt_model.min((1 - opt_model.logical_or(x_vars[(j, state.id)], y_vars[
                (j, state.id)])) * 100 + MasterController.get_min_delay_between_hosts(host_i, j) for j in hosts)
            return min_delta

        readers_hosts = dict()
        for s in states:
            reader_hosts_list = []
            for r in s.readers:
                host = MasterController.get_host_of_function(r)
                if host not in reader_hosts_list:
                    reader_hosts_list.append(host)
            readers_hosts.update({s.id: reader_hosts_list})

        reading_cost = sum(delta_cost(i, s) * g[(i, s.id)] * p[(i, s.id)] for s in states for i in readers_hosts[s.id])

        quadratic_obj_function = update_cost + write_cost + reading_cost

        # ===============================================================================================================

        opt_model.set_objective("min", quadratic_obj_function)

        print("Exporting the problem")
        cplex_model_path = "{}/cplex_model".format(MasterController.simulation_name)
        opt_model.export_as_lp(basename="cplex_model", path=cplex_model_path)

        t1 = datetime.datetime.now()

        # solving problem in locally
        print("\n\nSolving the problem locally")
        subprocess.call(
            "{} -c 'read {}.lp' 'set timelimit {}' 'set mip interval 1' 'optimize' 'write {}_solution sol'".format(
                CPLEX_PATH, cplex_model_path, CPLEX_TIME_LIMIT, cplex_model_path), shell=True)

        t2 = datetime.datetime.now()

        try:
            with open("{}_solution".format(cplex_model_path)) as myfile:
                head = [next(myfile) for x in range(20)]
                cost = int(round(float(head[6].split('=')[1].replace('\n', '').replace('"', ''))))
            print("\n*** Delay cost: {} ***".format(cost))

        except:
            print("\n\nWARNING: No solution exists!")
            cost = -1

        # indicates whether master state s is placed onto host i
        x_vars = {(h, s.id): 0 for h in hosts for s in states}
        # indicates whether a slave replica of s is placed onto host i
        y_vars = {(i, s.id): 0 for i in hosts for s in states}

        from xml.dom import minidom
        # parse an xml file by name
        mydoc = minidom.parse("{}_solution".format(cplex_model_path))
        variables = mydoc.getElementsByTagName('variable')

        # all item attributes
        print('\nAll variable:')
        for elem in variables:
            if "xhost" in elem.attributes['name'].value:
                if float(elem.attributes['value'].value) > 0.6:
                    host = (elem.attributes['name'].value).split("state")[0][1:]
                    state = "state" + (elem.attributes['name'].value).split("state")[1]
                    x_vars[(host, state)] = 1
            elif "yhost" in elem.attributes['name'].value:
                if float(elem.attributes['value'].value) > 0.6:
                    host = (elem.attributes['name'].value).split("state")[0][1:]
                    state = "state" + (elem.attributes['name'].value).split("state")[1]
                    y_vars[(host, state)] = 1

        running_time = t2 - t1
        print("RUNNING TIME: {}".format(running_time))
        print(x_vars)
        print(y_vars)
        return cost, running_time, x_vars, y_vars
Esempio n. 29
0
def main():
    opt_model = cpx.Model(name="MIP Model")
    opt_model.context.cplex_parameters.workmem = 1024

    n = int(sys.stdin.readline())

    cur = sys.stdin.readline()

    variables = {}
    has_edge = {}
    opt = None
    nodes = set()
    while cur != "":
        u, v, weight = cur.split(" ")
        u, v, weight = int(u), int(v), float(weight)

        isInfWeight = weight == -math.inf

        nodes.add(u)
        nodes.add(v)

        key = (u, v)
        var = opt_model.integer_var(lb=0, ub=1, name="x_{0}_{1}".format(u, v))

        if not isInfWeight:
            weight = int(weight)
            cur_opt = abs(weight) * var
            if weight > 0:
                cur_opt = (1 - var) * weight

            if opt is None:
                opt = cur_opt
            else:
                opt += cur_opt

        variables[key] = var
        has_edge[key] = weight > 0
        cur = sys.stdin.readline()

    nodes = list(nodes)
    len_nodes = len(nodes)
    c_id = 0
    for u_idx in range(len_nodes):
        u = nodes[u_idx]
        for v_idx in range(u_idx + 1, len_nodes):
            v = nodes[v_idx]
            for w_idx in range(v_idx + 1, len_nodes):
                w = nodes[w_idx]

                c_id += 1
                opt_model.add_constraint(
                    ct=(variables[(u, v)] + variables[(v, w)] -
                        variables[(u, w)] <= 1),
                    ctname=str(c_id))

                c_id += 1
                opt_model.add_constraint(
                    ct=(variables[(u, v)] - variables[(v, w)] +
                        variables[(u, w)] <= 1),
                    ctname=str(c_id))

                c_id += 1
                opt_model.add_constraint(
                    ct=(-variables[(u, v)] + variables[(v, w)] +
                        variables[(u, w)] <= 1),
                    ctname=str(c_id))

    # for minimization
    opt_model.minimize(opt)
    has_sol = opt_model.solve()

    if has_sol:
        for key in variables:
            sol_has_edge = int(float(variables[key])) == 1
            if (sol_has_edge and not has_edge[key]) or (not sol_has_edge
                                                        and has_edge[key]):
                print(str(key[0]) + " " + str(key[1]))
Esempio n. 30
0
def solve_problem_static(I, K, T, L, f_cost, p_list, p_u, delta_k, beta, gamma_k, vp, ld, x_n, y_n, x_m, y_m):
    # I = range(1, n + 1)
    # K = range(1, m + 1)
    # T = range(1, r + 1)
    # L = range(1, s + 1)

    # vp, ld, x_n, y_n, x_m, y_m = preflist(n, m, r, s,)

    # [print("v_{0}_{1}_{2}=%d".format(i,k,t) % sum(l * 1 * vp[i, k, t, l] for l in L) ) for i in I for k in K for t in T]

    # breakpoint()
    delta = {k: delta_k for k in K}  # limit on the individual size of the charging stations
    gamma = {k: gamma_k for k in K}  # capacity of individual charging stations
    # c = {k: rnd.uniform(.6, 1) for k in K}  # installation cost of  individual charging stations
    c = {k: 1 for k in K}  # installation cost of  individual charging stations
    # print(c)
    v = {(i, k, t, l): vp[i, k, t, l] for i in I for k in K for t in T for l in L}  # preference list
    l_d = {(i, k): ld[i, k] * 1 for i in I for k in K}  # lambda of the follower problem

    # big M's
    M = 1000
    M5 = 1000
    M6 = 1000

    prob = cpx.Model(name="EV Model")

    # primal leader and follower variables
    x = {(i, k, t): prob.binary_var(name="x_{0}_{1}_{2}".format(i, k, t)) for i in I for k in K for t in T}
    # x = {(i, k, t): prob.continuous_var(lb=0, ub=1, name="x_{0}_{1}_{2}".format(i, k, t)) for i in I for k in K for t in T}
    y = {k: prob.integer_var(lb=0, ub=np.inf, name="y_{0}".format(k)) for k in K}
    z = {k: prob.binary_var(name="z_{0}".format(k)) for k in K}
    p = {(k, t): prob.continuous_var(lb=0, ub=np.inf, name="p_{0}_{1}".format(k, t)) for k in K for t in T}

    # for i in I: # print v
    #  print(i)
    # for l in L:
    #     zd = {(i, k, t, l): v[i, k, t, l] for k in K for t in T}
    #    print(np.reshape(list(zd.values()), (m, r)))

    # dual follower variables
    pi = {(k, t): prob.continuous_var(lb=0, ub=None, name="pi_{0}_{1}".format(k, t)) for k in K for t in T}
    phi = {(i, k, t): prob.continuous_var(lb=0, ub=None, name="phi_{0}_{1}_{2}".format(i, k, t))
           for i in I for k in K for t in T}
    rho = {i: prob.continuous_var(lb=-np.inf, ub=None, name="rho_{0}".format(i)) for i in I}
    u = {(k, t): prob.binary_var(name="u_{0}_{1}".format(k, t)) for k in K for t in T}

    # leader constraints
    con71 = {
        k: prob.add_constraint(ct=z[k] - prob.sum(x[i, k, t] for i in I for t in T) <= 0, ctname="con71_{0}".format(k))
        for k in K}
    con72 = {(k, t): prob.add_constraint(ct=p[k, t] - prob.sum(x[i, k, t] for i in I) * p_u <= 0,
                                          ctname="con72_{0}_{1}".format(k, t)) for k in K for t in T}
    con7b = {k: prob.add_constraint(ct=y[k] - delta[k] * z[k] <= 0, ctname="con7b_{0}".format(k)) for k in K}
    con7c = prob.add_constraint(ct=prob.sum(c[k] * y[k] for k in K) <= beta, ctname="con7c")

    # follower KKT
    con7f = {(i, k, t): prob.add_constraint(
        ct=f_cost * p[k, t] + pi[k, t] + rho[i] + phi[
            i, k, t] >= - l_d[i, k] - prob.sum(l * p_list * v[i, k, t, l] for l in L),
        ctname="con7f_{0}_{1}_{2}".format(i, k, t)) for i in I for k in K for t in T}
    # [print("v_{0}_{1}_{2} =  %d, con7f_{0}_{1}_{2} = %s".format(i, k, t,i,k,t) % (sum(l * p_list  * vp[i, k, t, l] for l in L), str(con7f[i,k,t]))) for i in I for k in K for t in T]
    con7g = {(i, k, t): prob.add_constraint(
        ct=f_cost * p[k, t] + l_d[i, k] + pi[k, t] + rho[i] + phi[
            i, k, t] + M * x[i, k, t] <= - prob.sum(l * p_list * v[i, k, t, l] for l in L) + M,
        ctname="con7g_{0}_{1}_{2}".format(i, k, t)) for i in I for k in K for t in T}

    con7h = {(k, t): prob.add_constraint(
        ct=prob.sum(x[i, k, t] for i in I) - gamma[k] * y[k] <= 0,
        ctname="con7h_{0}_{1}".format(k, t)) for k in K for t in T}

    con7i = {(k, t): prob.add_constraint(
        ct=gamma[k] * y[k] - prob.sum(x[i, k, t] for i in I) + u[k, t] * M5 <= M5,
        ctname="con7i_{0}_{1}".format(k, t)) for k in K for t in T}

    con7j = {(k, t): prob.add_constraint(
        ct=pi[k, t] - u[k, t] * M5 <= 0,
        ctname="con7j_{0}_{1}".format(k, t)) for k in K for t in T}

    con7k = {i: prob.add_constraint(
        ct=prob.sum(x[i, k, t] for k in K for t in T) == 1,
        ctname="con7k_{0}".format(i)) for i in I}

    con7l = {(i, k, t): prob.add_constraint(
        ct=x[i, k, t] - prob.sum(v[i, k, t, l] for l in L) <= 0,
        ctname="con7l_{0}_{1}_{2}".format(i, k, t)) for i in I for k in K for t in T}

    con7m = {(i, k, t): prob.add_constraint(
        ct=phi[i, k, t] + M6 * x[i, k, t] <= M6 * (1 + prob.sum(v[i, k, t, l] for l in L)),
        ctname="con7m_{0}_{1}_{2}".format(i, k, t)) for i in I for k in K for t in T}

    # con7s = {(i, k, t): prob.add_constraint(
    # ct=w_linear[i, k, t] -w[i, k, t] ** 2 - 0 <= 0,
    # ctname="con7s_{0}_{1}_{2}".format(i, k, t)) for i in I for k in K for t in T}
    # objective function
    objective = prob.sum(x[i, k, t] * p[k, t] for i in I for k in K for t in T) - 1 * prob.sum(
        x[i, k, t] for i in I for k in K for t in T) - 0 * prob.sum(c[k] * y[k] for k in K)

    prob.maximize(objective)
    prob.print_information()
    # breakpoint()
    # prob.parameters.mip.tolerances.mipgap = 0.001
    # prob.parameters.timelimit = 500
    sol_static = prob.solve(log_output=True)
    print(prob.get_solve_status())
    # prob.print_solution()
    print(sol_static.get_objective_value())
    var = {"x": x, "y": y, "z": z, "p": p}
    return sol_static, var