from docstr_md.python import PySoup, compile_md from docstr_md.src_href import Github src_href = Github('https://github.com/dsbowen/hemlock-berlin/blob/master') path = 'hemlock_berlin/__init__.py' soup = PySoup(path=path, parser='sklearn', src_href=src_href) compile_md(soup, compiler='sklearn', outfile='docs_md/api.md')
from docstr_md.python import PySoup, compile_md from docstr_md.src_href import Github src_href = Github('https://github.com/dsbowen/docstr-md/blob/master') soup = PySoup(path='test.py', parser='sklearn', src_href=src_href) compile_md(soup, compiler='sklearn', outfile='docs_md/test.md')
from docstr_md.python import PySoup, compile_md from docstr_md.src_href import Github src_href = Github('https://github.com/dsbowen/selenium-tools/blob/master') path = 'selenium_tools/__init__.py' soup = PySoup(path=path, src_href=src_href) compile_md(soup, outfile='docs_md/api.md')
from docstr_md.python import PySoup, compile_md from docstr_md.src_href import Github src_href = Github('https://github.com/dsbowen/gshap/blob/master') soup = PySoup(path='gshap/__init__.py', parser='sklearn', src_href=src_href) soup.rm_properties() compile_md(soup, compiler='sklearn', outfile='docs_md/kernel_explainer.md') g_functions = ('hypothesis', 'intergroup', 'probability_distance') for g in g_functions: soup = PySoup(path='gshap/{}.py'.format(g), parser='sklearn', src_href=src_href) compile_md(soup, compiler='sklearn', outfile='docs_md/{}.md'.format(g)) soup = PySoup(path='gshap/datasets/__init__.py', parser='sklearn', src_href=src_href) compile_md(soup, compiler='sklearn', outfile='docs_md/datasets.md')
from docstr_md.python import PySoup, compile_md from docstr_md.src_href import Github src_href = Github('https://github.com/dsbowen/hemlock-big5/blob/master') soup = PySoup(path='hemlock_big5/__init__.py', parser='sklearn', src_href=src_href) compile_md(soup, compiler='sklearn', outfile='docs_md/api.md')