def errornorm(u, uh, norm_type="l2", degree_rise=3, mesh=None): """ Compute and return the error :math:`e = u - u_h` in the given norm. *Arguments* u, uh :py:class:`Functions <dolfin.functions.function.Function>` norm_type Type of norm. The :math:`L^2` -norm is default. For other norms, see :py:func:`norm <dolfin.fem.norms.norm>`. degree_rise The number of degrees above that of u_h used in the interpolation; i.e. the degree of piecewise polynomials used to approximate :math:`u` and :math:`u_h` will be the degree of :math:`u_h` + degree_raise. mesh Optional :py:class:`Mesh <dolfin.cpp.Mesh>` on which to compute the error norm. In simple cases, one may just define .. code-block:: python e = u - uh and evalute for example the square of the error in the :math:`L^2` -norm by .. code-block:: python assemble(e**2*dx(mesh)) However, this is not stable w.r.t. round-off errors considering that the form compiler may expand(#) the expression above to:: e**2*dx = u**2*dx - 2*u*uh*dx + uh**2*dx and this might get further expanded into thousands of terms for higher order elements. Thus, the error will be evaluated by adding a large number of terms which should sum up to something close to zero (if the error is small). This module computes the error by first interpolating both :math:`u` and :math:`u_h` to a common space (of high accuracy), then subtracting the two fields (which is easy since they are expressed in the same basis) and then evaluating the integral. (#) If using the tensor representation optimizations. The quadrature represenation does not suffer from this problem. """ # Check argument # if not isinstance(u, cpp.function.GenericFunction): # cpp.dolfin_error("norms.py", # "compute error norm", # "Expecting a Function or Expression for u") # if not isinstance(uh, cpp.function.Function): # cpp.dolfin_error("norms.py", # "compute error norm", # "Expecting a Function for uh") # Get mesh if isinstance(u, cpp.function.Function) and mesh is None: mesh = u.function_space().mesh() if isinstance(uh, cpp.function.Function) and mesh is None: mesh = uh.function_space().mesh() if hasattr(uh, "_cpp_object") and mesh is None: mesh = uh._cpp_object.function_space().mesh() if hasattr(u, "_cpp_object") and mesh is None: mesh = u._cpp_object.function_space().mesh() if mesh is None: cpp.dolfin_error("norms.py", "compute error norm", "Missing mesh") # Get rank if not u.ufl_shape == uh.ufl_shape: cpp.dolfin_error("norms.py", "compute error norm", "Value shapes don't match") shape = u.ufl_shape rank = len(shape) # Check that uh is associated with a finite element if uh.ufl_element().degree() is None: cpp.dolfin_error("norms.py", "compute error norm", "Function uh must have a finite element") # Degree for interpolation space. Raise degree with respect to uh. degree = uh.ufl_element().degree() + degree_rise # Check degree of 'exact' solution u degree_u = u.ufl_element().degree() if degree_u is not None and degree_u < degree: cpp.warning("Degree of exact solution may be inadequate for accurate result in errornorm.") # Create function space if rank == 0: V = FunctionSpace(mesh, "Discontinuous Lagrange", degree) elif rank == 1: V = VectorFunctionSpace(mesh, "Discontinuous Lagrange", degree, dim=shape[0]) elif rank > 1: V = TensorFunctionSpace(mesh, "Discontinuous Lagrange", degree, shape=shape) # Interpolate functions into finite element space pi_u = interpolate(u, V) pi_uh = interpolate(uh, V) # Compute the difference e = Function(V) e.assign(pi_u) e.vector().axpy(-1.0, pi_uh.vector()) # Compute norm return norm(e, norm_type=norm_type, mesh=mesh)
def project(v, V=None, bcs=None, mesh=None, function=None, solver_type="lu", preconditioner_type="default", form_compiler_parameters=None): """Return projection of given expression *v* onto the finite element space *V*. *Arguments* v a :py:class:`Function <dolfin.functions.function.Function>` or an :py:class:`Expression <dolfin.functions.expression.Expression>` bcs Optional argument :py:class:`list of DirichletBC <dolfin.fem.bcs.DirichletBC>` V Optional argument :py:class:`FunctionSpace <dolfin.functions.functionspace.FunctionSpace>` mesh Optional argument :py:class:`mesh <dolfin.cpp.Mesh>`. solver_type see :py:func:`solve <dolfin.fem.solving.solve>` for options. preconditioner_type see :py:func:`solve <dolfin.fem.solving.solve>` for options. form_compiler_parameters see :py:class:`Parameters <dolfin.cpp.Parameters>` for more information. *Example of usage* .. code-block:: python v = Expression("sin(pi*x[0])") V = FunctionSpace(mesh, "Lagrange", 1) Pv = project(v, V) This is useful for post-processing functions or expressions which are not readily handled by visualization tools (such as for example discontinuous functions). """ # Try figuring out a function space if not specified if V is None: # Create function space based on Expression element if trying # to project an Expression if isinstance(v, dolfin.function.expression.Expression): if mesh is not None and isinstance(mesh, cpp.mesh.Mesh): V = FunctionSpace(mesh, v.ufl_element()) # else: # cpp.dolfin_error("projection.py", # "perform projection", # "Expected a mesh when projecting an Expression") else: # Otherwise try extracting function space from expression V = _extract_function_space(v, mesh) # Check arguments # Ensure we have a mesh and attach to measure if mesh is None: mesh = V.mesh() dx = ufl.dx(mesh) # Define variational problem for projection w = TestFunction(V) Pv = TrialFunction(V) a = ufl.inner(w, Pv) * dx L = ufl.inner(w, v) * dx # Assemble linear system A, b = assemble_system( a, L, bcs=bcs, form_compiler_parameters=form_compiler_parameters) # Solve linear system for projection if function is None: function = Function(V) cpp.la.solve(A, function.vector(), b, solver_type, preconditioner_type) return function
def project(v, V=None, func_degree=None, bcs=None, mesh=None, function=None, solver_type="lu", preconditioner_type="default", form_compiler_parameters=None): """ This function is a modification of FEniCS's built-in project function that adopts the :math:`r^2dr` measure as opposed to the standard Cartesian :math:`dx` measure. For documentation and usage, see the `original module <https://bitbucket.org/fenics-project/dolfin/src/master/python/dolfin/fem/projection.py>`_. .. note:: Note the extra argument func_degree: this is used to interpolate the :math:`r^2` Expression to the same degree as used in the definition of the Trial and Test function spaces. """ # Try figuring out a function space if not specified if V is None: # Create function space based on Expression element if trying # to project an Expression if isinstance(v, Expression): # FIXME: Add handling of cpp.MultiMesh if mesh is not None and isinstance(mesh, cpp.mesh.Mesh): V = FunctionSpace(mesh, v.ufl_element()) # else: # cpp.dolfin_error("projection.py", # "perform projection", # "Expected a mesh when projecting an Expression") else: # Otherwise try extracting function space from expression V = _extract_function_space(v, mesh) # Ensure we have a mesh and attach to measure if mesh is None: mesh = V.mesh() dx = ufl.dx(mesh) # Define variational problem for projection # DS: HERE IS WHERE I MODIFY r2 = Expression('pow(x[0],2)', degree=func_degree) w = TestFunction(V) Pv = TrialFunction(V) a = ufl.inner(w, Pv) * r2 * dx L = ufl.inner(w, v) * r2 * dx # Assemble linear system A, b = assemble_system(a, L, bcs=bcs, form_compiler_parameters=form_compiler_parameters) # Solve linear system for projection if function is None: function = Function(V) cpp.la.solve(A, function.vector(), b, solver_type, preconditioner_type) return function
def r2_errornorm(u, uh, norm_type="l2", degree_rise=3, mesh=None ): """ This function is a modification of FEniCS's built-in errornorm function that adopts the :math:`r^2dr` measure as opposed to the standard Cartesian :math:`dx` measure. For documentation and usage, see the original module <https://bitbucket.org/fenics-project/dolfin/src/master/python/dolfin/fem/norms.py>_. """ # Get mesh if isinstance(u, cpp.function.Function) and mesh is None: mesh = u.function_space().mesh() if isinstance(uh, cpp.function.Function) and mesh is None: mesh = uh.function_space().mesh() # if isinstance(uh, MultiMeshFunction) and mesh is None: # mesh = uh.function_space().multimesh() if hasattr(uh, "_cpp_object") and mesh is None: mesh = uh._cpp_object.function_space().mesh() if hasattr(u, "_cpp_object") and mesh is None: mesh = u._cpp_object.function_space().mesh() if mesh is None: raise RuntimeError("Cannot compute error norm. Missing mesh.") # Get rank if not u.ufl_shape == uh.ufl_shape: raise RuntimeError("Cannot compute error norm. Value shapes do not match.") shape = u.ufl_shape rank = len(shape) # Check that uh is associated with a finite element if uh.ufl_element().degree() is None: raise RuntimeError("Cannot compute error norm. Function uh must have a finite element.") # Degree for interpolation space. Raise degree with respect to uh. degree = uh.ufl_element().degree() + degree_rise # Check degree of 'exact' solution u degree_u = u.ufl_element().degree() if degree_u is not None and degree_u < degree: cpp.warning("Degree of exact solution may be inadequate for accurate result in errornorm.") # Create function space if rank == 0: V = FunctionSpace(mesh, "Discontinuous Lagrange", degree) elif rank == 1: V = VectorFunctionSpace(mesh, "Discontinuous Lagrange", degree, dim=shape[0]) elif rank > 1: V = TensorFunctionSpace(mesh, "Discontinuous Lagrange", degree, shape=shape) # Interpolate functions into finite element space pi_u = interpolate(u, V) pi_uh = interpolate(uh, V) # Compute the difference e = Function(V) e.assign(pi_u) e.vector().axpy(-1.0, pi_uh.vector()) # Compute norm return r2_norm(e, func_degree=degree, norm_type=norm_type, mesh=mesh )
class DOLFINErrorControlGenerator(ErrorControlGenerator): """ This class provides a realization of ffc.errorcontrol.errorcontrolgenerators.ErrorControlGenerator for use with UFL forms defined over DOLFIN objects """ def __init__(self, F, M, u): """ *Arguments* F (tuple or Form) tuple of (bilinear, linear) forms or linear form M (Form) functional or linear form u (Coefficient) The coefficient considered as the unknown. """ ErrorControlGenerator.__init__(self, __import__("dolfin"), F, M, u) def initialize_data(self): """ Extract required objects for defining error control forms. This will be stored and reused. """ # Developer's note: The UFL-FFC-DOLFIN--PyDOLFIN toolchain for # error control is quite fine-tuned. In particular, the order # of coefficients in forms is (and almost must be) used for # their assignment. This means that the order in which these # coefficients are defined matters and should be considered # fixed. # Primal trial element space self._V = self.u.function_space() # Primal test space == Dual trial space Vhat = self.weak_residual.arguments()[0].function_space() # Discontinuous version of primal trial element space self._dV = tear(self._V) # Extract cell and geometric dimension mesh = self._V.mesh() dim = mesh.topology().dim() # Function representing improved dual E = increase_order(Vhat) self._Ez_h = Function(E) # Function representing cell bubble function B = FunctionSpace(mesh, "B", dim + 1) self._b_T = Function(B) self._b_T.vector()[:] = 1.0 # Function representing strong cell residual self._R_T = Function(self._dV) # Function representing cell cone function C = FunctionSpace(mesh, "DG", dim) self._b_e = Function(C) # Function representing strong facet residual self._R_dT = Function(self._dV) # Function for discrete dual on primal test space self._z_h = Function(Vhat) # Piecewise constants for assembling indicators self._DG0 = FunctionSpace(mesh, "DG", 0)