Esempio n. 1
0
def example3(Ms):
    x0 = y0 = z0 = 0
    x1 = 500
    y1 = 10
    z1 = 500
    nx = 50
    ny = 1
    nz = 1
    mesh = df.Box(x0, y0, z0, x1, y1, z1, nx, ny, nz)

    sim = Sim(mesh, Ms, unit_length=1e-9)
    sim.alpha = 0.01
    sim.set_m((1, 0, 0.1))

    H_app = Zeeman((0, 0, 5e5))
    sim.add(H_app)

    exch = fe.Exchange(13.0e-12)
    sim.add(exch)

    demag = Demag(solver="FK")
    sim.add(demag)

    llg = sim.llg
    max_time = 1 * np.pi / (llg.gamma * 1e5)
    ts = np.linspace(0, max_time, num=100)

    for t in ts:
        print t
        sim.run_until(t)

        df.plot(llg._m)

    df.interactive()
Esempio n. 2
0
def run_finmag():
    # Setup
    setupstart = time.time()
    mesh = df.Box(0, 0, 0, 30, 30, 100, 15, 15, 50)
    sim = Simulation(mesh, Ms=0.86e6, unit_length=1e-9)
    sim.set_m((1, 0, 1))
    demag = Demag("FK")
    demag.parameters["poisson_solver"]["method"] = "cg"
    demag.parameters["poisson_solver"]["preconditioner"] = "jacobi"
    demag.parameters["laplace_solver"]["method"] = "cg"
    demag.parameters["laplace_solver"]["preconditioner"] = "bjacobi"
    sim.add(demag)
    sim.add(Exchange(13.0e-12))

    # Dynamics
    dynamicsstart = time.time()
    sim.run_until(3.0e-10)
    endtime = time.time()

    # Write output to results.txt
    output = open(os.path.join(MODULE_DIR, "results.txt"), "a")
    output.write("\nBackend %s:\n" % df.parameters["linear_algebra_backend"])
    output.write("\nSetup: %.3f sec.\n" % (dynamicsstart - setupstart))
    output.write("Dynamics: %.3f sec.\n\n" % (endtime - dynamicsstart))
    output.write(str(default_timer))
    output.close()
Esempio n. 3
0
def example2(Ms):
    x0 = y0 = z0 = 0
    x1 = 500
    y1 = 10
    z1 = 100
    nx = 50
    ny = 1
    nz = 1
    mesh = df.Box(x0, y0, z0, x1, y1, z1, nx, ny, nz)

    S1 = df.FunctionSpace(mesh, "Lagrange", 1)
    S3 = df.VectorFunctionSpace(mesh, "Lagrange", 1, dim=3)

    llb = LLB(S1, S3)

    llb.alpha = 0.01
    llb.beta = 0.0
    llb.M0 = Ms
    llb.set_M((Ms, 0, 0))
    llb.set_up_solver(jacobian=False)
    llb.chi = 1e-4

    H_app = Zeeman((0, 0, 5e5))
    H_app.setup(S3, llb._M, Ms=1)
    llb.interactions.append(H_app)

    exchange = Exchange(13.0e-12, 1e-2)
    exchange.chi = 1e-4
    exchange.setup(S3, llb._M, Ms, unit_length=1e-9)
    llb.interactions.append(exchange)

    demag = Demag("FK")
    demag.setup(S3, llb._M, Ms=1)
    llb.interactions.append(demag)

    max_time = 1 * np.pi / (llb.gamma * 1e5)
    ts = np.linspace(0, max_time, num=100)

    for t in ts:
        print t
        llb.run_until(t)

        df.plot(llb._M)

    df.interactive()
Esempio n. 4
0
def example1(Ms=8.6e5):
    x0 = y0 = z0 = 0
    x1 = y1 = z1 = 10
    nx = ny = nz = 1
    mesh = df.Box(x0, x1, y0, y1, z0, z1, nx, ny, nz)

    S1 = df.FunctionSpace(mesh, "Lagrange", 1)
    S3 = df.VectorFunctionSpace(mesh, "Lagrange", 1, dim=3)
    vis = df.Function(S3)

    llb = LLB(S1, S3)

    llb.alpha = 0.01
    llb.beta = 0.0
    llb.M0 = Ms
    llb.set_M((Ms, 0, 0))
    llb.set_up_solver(jacobian=False)
    llb.chi = 1e-4

    H_app = Zeeman((0, 0, 1e5))
    H_app.setup(S3, llb._M, Ms=1)
    llb.interactions.append(H_app)

    exchange = Exchange(13.0e-12, 1e-2)
    exchange.chi = 1e-4
    exchange.setup(S3, llb._M, Ms, unit_length=1e-9)

    llb.interactions.append(exchange)

    max_time = 2 * np.pi / (llb.gamma * 1e5)
    ts = np.linspace(0, max_time, num=100)

    mlist = []
    Ms_average = []
    for t in ts:
        llb.run_until(t)
        mlist.append(llb.M)
        vis.vector()[:] = mlist[-1]
        Ms_average.append(llb.M_average)
        df.plot(vis)
        time.sleep(0.00)
    print 'llb times', llb.call_field_times
    save_plot(ts, Ms_average, 'Ms_%g-time.png' % Ms)
    df.interactive()
Esempio n. 5
0
def example1_sundials(Ms):
    x0 = y0 = z0 = 0
    x1 = y1 = z1 = 10
    nx = ny = nz = 1
    mesh = df.Box(x0, x1, y0, y1, z0, z1, nx, ny, nz)

    S1 = df.FunctionSpace(mesh, "Lagrange", 1)
    S3 = df.VectorFunctionSpace(mesh, "Lagrange", 1, dim=3)
    vis = df.Function(S3)

    llb = LLB(S1, S3)
    llb.alpha = 0.00
    llb.set_m((1, 1, 1))
    llb.Ms = Ms
    H_app = Zeeman((0, 0, 1e5))
    H_app.setup(S3, llb._m, Ms=Ms)
    llb.interactions.append(H_app)
    exchange = BaryakhtarExchange(13.0e-12, 1e-2)
    exchange.setup(S3, llb._m, llb._Ms)
    llb.interactions.append(exchange)

    integrator = llg_integrator(llb, llb.M, abstol=1e-10, reltol=1e-6)

    max_time = 2 * np.pi / (llb.gamma * 1e5)
    ts = np.linspace(0, max_time, num=50)

    mlist = []
    Ms_average = []
    for t in ts:
        integrator.advance_time(t)
        mlist.append(integrator.m.copy())
        llb.M = mlist[-1]
        vis.vector()[:] = mlist[-1]
        Ms_average.append(llb.M_average)
        df.plot(vis)
        time.sleep(0.0)
    print llb.count
    save_plot(ts, Ms_average, 'Ms_%g-time-sundials.png' % Ms)
    df.interactive()
Esempio n. 6
0
def example1(Ms=8.6e5):
    x0 = y0 = z0 = 0
    x1 = y1 = z1 = 10
    nx = ny = nz = 1
    mesh = df.Box(x0, x1, y0, y1, z0, z1, nx, ny, nz)

    S1 = df.FunctionSpace(mesh, "Lagrange", 1)
    S3 = df.VectorFunctionSpace(mesh, "Lagrange", 1, dim=3)
    vis = df.Function(S3)

    llb = LLB(S1, S3, rtol=1e-6, atol=1e-10)
    llb.Ms = Ms
    llb.alpha = 0.0
    llb.set_m((1, 1, 1))
    H_app = Zeeman((0, 0, 1e5))
    H_app.setup(S3, llb._m, Ms=Ms)
    llb.interactions.append(H_app)
    exchange = BaryakhtarExchange(13.0e-12, 1e-5)
    exchange.setup(S3, llb._m, llb._Ms)
    llb.interactions.append(exchange)

    max_time = 2 * np.pi / (llb.gamma * 1e5)
    ts = np.linspace(0, max_time, num=100)

    mlist = []
    Ms_average = []
    for t in ts:
        llb.run_until(t)
        mlist.append(llb.M)
        vis.vector()[:] = mlist[-1]
        Ms_average.append(llb.M_average)
        df.plot(vis)
        time.sleep(0.00)
    print llb.count
    save_plot(ts, Ms_average, 'Ms_%g-time.png' % Ms)
    df.interactive()
Esempio n. 7
0
import dolfin as df
import numpy
from scipy.integrate import odeint
from finmag.sim.llg import LLG

"""
Compute the behaviour of a one-dimensional strip of magnetic material,
with exchange interaction.

"""

nm=1e-9
xdim = 30
ydim = 30
zdim = 3
mesh = dolfin.Box(0,0,0,xdim*nm,ydim*nm, zdim*nm, xdim/3, ydim/3, zdim/3)

llg = LLG(mesh)
llg.alpha=1.0
llg.H_app=(0,0,0)

llg.A =1.3e-11
llg.D = 4e-3

#llg.set_m((
 #       'MS * (2*x[0]/L - 1)',
  #      'sqrt(MS*MS - MS*MS*(2*x[0]/L - 1)*(2*x[0]/L - 1))',
   #     '0'), L=length, MS=llg.Ms)
llg.set_m((
        'MS',
        '0',
Esempio n. 8
0
import numpy as np
import dolfin as df
from finmag import Simulation
from finmag.energies import Exchange, DMI_Old, DMI

mesh = df.Box(0, 0, 0, 30e-9, 30e-9, 3e-9, 10, 10, 1)
Ms = 8.6e5
sim = Simulation(mesh, Ms)
sim.set_m((Ms, 0, 0))

A = 1.3e-11
D = 4e-3
sim.add(Exchange(A))
sim.add(DMI(D))

series = df.TimeSeries("solution/m")
t = np.linspace(0, 1e-9, 1000)
for i in t:
    sim.run_until(i)
    p = df.plot(sim.llg._m)
    p.write_png("m_{}".format(i))
    series.store(sim.llg._m.vector(), i)
df.interactive()
Esempio n. 9
0
        self.H_gradm = df.PETScVector()

        self.integrator = native_llb.StochasticLLGIntegratorSTT(
            self.m, self.m_pred, self._Ms, self._T, self.real_volumes,
            self._alpha, self.P, self.beta, self.stochastic_update_field,
            self.method)

        # seems that in the presence of current, the time step have to very
        # small
        self.dt = 1e-14

        # TODO: fix the using_u0 here.


if __name__ == "__main__":
    mesh = df.Box(0, 0, 0, 5, 5, 5, 1, 1, 1)
    sim = SLLG(mesh, 8.6e5, unit_length=1e-9)
    sim.alpha = 0.1
    sim.set_m((1, 0, 0))
    ts = np.linspace(0, 1e-9, 11)
    print sim.Ms
    sim.T = 2000
    sim.dt = 1e-14

    H0 = 1e6
    sim.add(Zeeman((0, 0, H0)))

    A = helpers.scalar_valued_dg_function(13.0e-12, mesh)
    exchange = Exchange(A)
    sim.add(exchange)
In dolfin 1.1.0, the ordering of degrees of freedom does not correspond
to geometrical structures such as vertices anymore. This has to be 
investigated further. For now, the re-ordering can be turned off using
the commented line below.

"""
# df.parameters.reorder_dofs_serial = False # for dolfin 1.1.0
"""
The goal is to compute the values of f(r, t) = sin(x) * sin(t) on a mesh for
different points in time. The cost of updating f a couple of times is measured.

"""

L = math.pi / 2
n = 10
mesh = df.Box(0, 0, 0, L, L, L, n, n, n)
#mesh = df.BoxMesh(0, 0, 0, L, L, L, n, n, n) # dor dolfin 1.1.0
ts = np.linspace(0, math.pi / 2, 100)

# dolfin expression code

S = df.FunctionSpace(mesh, "CG", 1)
expr = df.Expression("sin(x[0]) * sin(t)", t=0.0)

start = time.time()
for t in ts:
    expr.t = t
    f_dolfin = df.interpolate(expr, S)
t_dolfin = time.time() - start
print "Time needed for dolfin expression: {:.2g} s.".format(t_dolfin)
Esempio n. 11
0
import dolfin as df
import numpy as np
from finmag.native import sundials
from finmag.util.timings import default_timer
from finmag.energies import Demag

if __name__ == '__main__':
    x0 = y0 = z0 = 0
    x1 = 500e-9
    y1 = 500e-9
    z1 = 2e-9
    nx = 120
    ny = 120
    nz = 3
    mesh = df.Box(x0, y0, z0, x1, y1, z1, nx, ny, nz)

    print mesh.num_vertices()

    Vv = df.VectorFunctionSpace(mesh, 'Lagrange', 1)

    Ms = 8.6e5
    expr = df.Expression(('1+x[0]', '1+2*x[1]','1+3*x[2]'))
    m = df.project(expr, Vv)
    m = df.project(df.Constant((1, 0, 0)), Vv)


    demag = Demag("FK")
    demag.setup(Vv, m, Ms)
    demag.compute_field()
    print default_timer
Esempio n. 12
0
import numpy
from scipy.integrate import odeint
from finmag.sim.llg import LLG

"""
Compute the behaviour of a one-dimensional strip of magnetic material,
with exchange interaction.

"""

nm=1e-9
xdim = 30
ydim = 30
mesh = dolfin.Rectangle(0,0,xdim*nm,ydim*nm, xdim/3, ydim/3)

plotmesh = dolfin.Box(0,0,0,xdim*nm,ydim*nm, nm, xdim/3, ydim/3,1)
plotV = dolfin.VectorFunctionSpace(plotmesh,"CG",1)
plotM = dolfin.Function(plotV)



llg = LLG(mesh)
llg.alpha=1.0
llg.H_app=(0,0,0)

llg.A =1.3e-11
llg.D = 4e-3

#llg.set_m((
 #       'MS * (2*x[0]/L - 1)',
  #      'sqrt(MS*MS - MS*MS*(2*x[0]/L - 1)*(2*x[0]/L - 1))',
Esempio n. 13
0
import dolfin as df
import numpy
from scipy.integrate import odeint
from finmag.sim.llg import LLG

"""
Compute the behaviour of a one-dimensional strip of magnetic material,
with exchange interaction.

"""

length = 60e-9 # in meters
simplexes = 20
#mesh = dolfin.Interval(simplexes, 0, length)
#mesh = dolfin.Rectangle(0,0,length,length, simplexes, simplexes)
mesh = dolfin.Box(0,0,0,length,length, length/20, simplexes, simplexes, simplexes/20)


llg = LLG(mesh)
llg.alpha=0.1
llg.H_app=(0,0,0)

llg.A = 1.3e-11
llg.D = 4e-3

#llg.set_m((
 #       'MS * (2*x[0]/L - 1)',
  #      'sqrt(MS*MS - MS*MS*(2*x[0]/L - 1)*(2*x[0]/L - 1))',
   #     '0'), L=length, MS=llg.Ms)
llg.set_m((
        'MS',
Esempio n. 14
0
"""

import dolfin
import dolfin as df
import numpy
from scipy.integrate import odeint
from finmag.sim.llg import LLG
"""
Compute the behaviour of a one-dimensional strip of magnetic material,
with exchange interaction.

"""

nm = 1e-9
simplexes = 20
mesh = dolfin.Box(0, 0, 0, 60 * nm, 3 * nm, 3 * nm, simplexes, 1, 1)

llg = LLG(mesh)
llg.alpha = 1.0
llg.H_app = (0, 0, 0)

llg.A = 1.3e-11
llg.D = 4e-3

#llg.set_m((
#       'MS * (2*x[0]/L - 1)',
#      'sqrt(MS*MS - MS*MS*(2*x[0]/L - 1)*(2*x[0]/L - 1))',
#     '0'), L=length, MS=llg.Ms)
llg.set_m(('MS', '0', '0'), MS=llg.Ms)
llg.setup(use_dmi=True, use_exchange=True)
llg.pins = []