Esempio n. 1
0
    def set_boundary_conditions(self):

        if self._space_dim == 2:
            # boundary conditions
            gamma01 = PointSubDomain((0.0, 0.0), tol=1e-10)
            gamma02 = dlfn.CompiledSubDomain("near(x[1], 0.0)")

            self._bcs = [
                (DisplacementBCType.fixed_pointwise, gamma01, None),
                (DisplacementBCType.fixed_component_pointwise, gamma02, 1,
                 None),
                (DisplacementBCType.constant_component,
                 CylinderBoundaryMarkers.top.value, 1, self._top_displacement)
            ]

        if self._space_dim == 3:
            # boundary conditions
            gamma01 = PointSubDomain((0.0, 0.0, 0.0), tol=1e-10)
            gamma02 = dlfn.CompiledSubDomain("near(x[2], 0.0)")
            gamma03 = PointSubDomain((0.0, 0.1, 0.0), tol=1e-10)

            self._bcs = [
                (DisplacementBCType.fixed_pointwise, gamma01, None),
                (DisplacementBCType.fixed_component_pointwise, gamma02, 2,
                 None),
                (DisplacementBCType.fixed_component_pointwise, gamma03, 0,
                 None),
                (DisplacementBCType.constant_component,
                 CylinderBoundaryMarkers.top.value, 2, self._top_displacement)
            ]
Esempio n. 2
0
	def __init__(self, pointa, pointb, *, eps = csg_eps):
		eps *= numpy.linalg.norm(numpy.array(pointb)-numpy.array(pointa))
		super().__init__(mshr.Rectangle(dolfin.Point(*pointa), dolfin.Point(*pointb)), csg_boundaries = [
			dolfin.CompiledSubDomain('on_boundary && near(x[0], xx, eps)', xx = pointa[0], eps = eps),
			dolfin.CompiledSubDomain('on_boundary && near(x[0], xx, eps)', xx = pointb[0], eps = eps),
			dolfin.CompiledSubDomain('on_boundary && near(x[1], xx, eps)', xx = pointa[1], eps = eps),
			dolfin.CompiledSubDomain('on_boundary && near(x[1], xx, eps)', xx = pointb[1], eps = eps)
		])
Esempio n. 3
0
def get_2d_rectangular_mesh_boundaries(xl, xr, yb, yt):
    left_bndry = dl.CompiledSubDomain(
        "near(x[0],%e)&&on_boundary" % xl)
    right_bndry = dl.CompiledSubDomain(
        "near(x[0],%e)&&on_boundary" % xr)
    bottom_bndry = dl.CompiledSubDomain(
        "near(x[1],%e)&&on_boundary" % yb)
    top_bndry = dl.CompiledSubDomain(
        "near(x[1],%e)&&on_boundary" % yt)
    return left_bndry, right_bndry, bottom_bndry, top_bndry
Esempio n. 4
0
    def test_centers(self):
        mesh = df.UnitCubeMesh(4, 4, 4)
        facet_f = df.MeshFunction('size_t', mesh, 2, 0)
        df.CompiledSubDomain('near(x[0], 0)').mark(facet_f, 1)
        df.CompiledSubDomain('near(x[0], 1)').mark(facet_f, 2)

        x = np.array(get_geom_centers(facet_f, (1, 2)))
        y = np.array([[0, 0.5, 0.5], [1, 0.5, 0.5]])

        self.assertTrue(np.linalg.norm(x - y) < 1E-13)
Esempio n. 5
0
    def test_from_DG0(self):
        
        def main(n, chi, measure, restrict):
            mesh = df.UnitCubeMesh(2, n, n)
            facet_f = df.MeshFunction('size_t', mesh, 2, 0)
            chi.mark(facet_f, 1)

            submesh = EmbeddedMesh(facet_f, 1)
            
            transfer = SubMeshTransfer(mesh, submesh)

            V = df.FunctionSpace(mesh, 'Discontinuous Lagrange Trace', 0)
            Vsub = df.FunctionSpace(submesh, 'DG', 0)

            to_V = transfer.compute_map(V, Vsub, strict=False)
            # Set degree 0 to get the quad order right
            f = df.Expression('x[0] + 2*x[1] - x[2]', degree=0)
            
            fsub = df.interpolate(f, Vsub)
            fV = df.Function(V)

            to_V(fV, fsub)

            y = V.tabulate_dof_coordinates().reshape((V.dim(), -1))
            x = Vsub.tabulate_dof_coordinates().reshape((Vsub.dim(), -1))
            # Correspondence of coordinates
            self.assertTrue(np.linalg.norm(y[transfer.cache] - x) < 1E-13)
            # These are all the coordinates
            idx = list(set(range(V.dim())) - set(transfer.cache))
            self.assertTrue(not any(chi.inside(xi, True) for xi in y[idx]))

            dS_ = df.Measure(measure, domain=mesh, subdomain_data=facet_f)
            # Stange that this is not exact
            error = df.inner(restrict(fV - f), restrict(fV - f))*dS_(1)
            error = df.sqrt(abs(df.assemble(error, form_compiler_parameters={'quadrature_degree': 0})))
            
            return error

        # Trick domains boundary beacuse we want to use inside properly?
        bdry = df.CompiledSubDomain(' || '.join(['near(x[0]*(1-x[0]), 0)',
                                                 'near(x[1]*(1-x[1]), 0)',
                                                 'near(x[2]*(1-x[2]), 0)']))

        inputs = ((df.CompiledSubDomain('near(x[0], 0.5)'), 'dS', df.avg),
                  (bdry, 'ds', lambda x: x))
        for chi, measure, restrict in inputs:
            errors = []
            for n in (2, 4, 8, 16):
                e = main(n, chi, measure, restrict)
                self.assertTrue(not errors or e < errors[-1])
                errors.append(e)
Esempio n. 6
0
def boundaries_of_rectangle_mesh(mesh):

    x0, y0 = mesh.coordinates().min(0)
    x1, y1 = mesh.coordinates().max(0)

    atol_x = (x1 - x0) * EPS
    atol_y = (y1 - y0) * EPS

    bot = dolfin.CompiledSubDomain('x[1] < y0 && on_boundary', y0=y0+atol_y)
    rhs = dolfin.CompiledSubDomain('x[0] > x1 && on_boundary', x1=x1-atol_x)
    top = dolfin.CompiledSubDomain('x[1] > y1 && on_boundary', y1=y1-atol_y)
    lhs = dolfin.CompiledSubDomain('x[0] < x0 && on_boundary', x0=x0+atol_x)

    return bot, rhs, top, lhs
Esempio n. 7
0
def get_brain(case_id, conductivity) -> CoupledBrainModel:
    time_constant = df.Constant(0)
    mesh, cell_function, interface_function = get_mesh("rose_meshes", "rose")

    cell_tags = CellTags(CSF=3, GM=2, WM=1, Kinf=4)
    interface_tags = InterfaceTags(skull=None, CSF_GM=None, GM_WM=None, CSF=None, GM=None, WM=None)

    test_cell_function = df.MeshFunction("size_t", mesh, mesh.geometric_dimension())
    test_cell_function.set_all(0)

    df.CompiledSubDomain("x[1] >= -pi/16*x[0]").mark(test_cell_function, 4)
    if case_id == 1:
        df.CompiledSubDomain("x[1] >= 25*pi/16*x[0]").mark(test_cell_function, 2)
    elif case_id == 2:
        df.CompiledSubDomain("x[1] >= 7*pi/32*x[0]").mark(test_cell_function, 2)

    cell_function.array()[(cell_function.array() == 2) & (test_cell_function.array() == 4)] = 4

    Chi = 1.26e3      # 1/cm -- Dougherty 2015
    Cm = 1.0          # muF/cm^2 -- Dougherty 2015

    Mi_dict = {
        3: df.Constant(1e-12),       # Set to zero?    1e-12
        1: df.Constant(conductivity),           # Dlougherty isotropic WM intracellular conductivity 1.0 [mS/cm]
        2: df.Constant(conductivity),           # Dlougherty isotropic GM intracellular conductivity 1.0 [mS/cm]
        4: df.Constant(conductivity),           # Dlougherty isotropic GM intracellular conductivity 1.0 [mS/cm]
    }

    Me_dict = {
        3: df.Constant(16.54),        # Dougherty isotropic CSF conductivity 16.54 [mS/cm] 16.54
        1: df.Constant(1.26),         # 1.26     # Dougherty isotropic WM extracellular conductivity 1.26 [mS/cm]
        2: df.Constant(2.76),         # 2.76     # Dougherty isotropic GM extracellular conductivity 2.76 [mS/cm]
        4: df.Constant(2.76),         # 2.76     # Dougherty isotropic GM extracellular conductivity 2.76 [mS/cm]
    }

    brain = CoupledBrainModel(
        time=time_constant,
        mesh=mesh,
        cell_model=Cressman(),
        cell_function=cell_function,
        cell_tags=cell_tags,
        interface_function=interface_function,
        interface_tags=interface_tags,
        intracellular_conductivity=Mi_dict,
        other_conductivity=Me_dict,         # Either lmbda or extracellular
        surface_to_volume_factor=Chi,
        membrane_capacitance=Cm
    )
    return brain
Esempio n. 8
0
    def test3D(self):
        nx = 10
        ny = 15
        nz = 20
        mesh = dl.UnitCubeMesh(nx, ny, nz)

        true_sub = dl.CompiledSubDomain("x[0] <= .5")
        true_marker = dl.MeshFunction('size_t', mesh, 3, value=0)
        true_sub.mark(true_marker, 1)

        np_sub_x = np.ones(nx, dtype=np.uint)
        np_sub_x[nx // 2:] = 0
        np_sub_y = np.ones(ny, dtype=np.uint)
        np_sub_z = np.ones(nz, dtype=np.uint)

        np_sub_xx, np_sub_yy, np_sub_zz = np.meshgrid(np_sub_x,
                                                      np_sub_y,
                                                      np_sub_z,
                                                      indexing='ij')
        np_sub = np_sub_xx * np_sub_yy * np_sub_zz
        h = np.array([1. / nx, 1. / ny, 1. / nz])
        marker = dl.MeshFunction('size_t', mesh, 3)
        numpy2MeshFunction(mesh, h, np_sub, marker)

        assert_allclose(marker.array(),
                        true_marker.array(),
                        rtol=1e-7,
                        atol=1e-9)
Esempio n. 9
0
 def set_boundary_conditions(self):
     # boundary conditions
     self._bcs = []
     BCType = DisplacementBCType
     if self._bc_type == "floating":
         self._bcs.append((BCType.fixed_component,
                           HyperCubeBoundaryMarkers.left.value, 0, None))
         self._bcs.append((BCType.fixed_component,
                           HyperCubeBoundaryMarkers.bottom.value, 1, None))
         self._bcs.append((BCType.constant_component,
                           HyperCubeBoundaryMarkers.right.value, 0, 0.1))
     elif self._bc_type == "clamped":
         self._bcs.append(
             (BCType.fixed, HyperCubeBoundaryMarkers.left.value, None))
         self._bcs.append(
             (BCType.constant, HyperCubeBoundaryMarkers.right.value, (0.1,
                                                                      0.0)))
     elif self._bc_type == "clamped_free":
         self._bcs.append(
             (BCType.fixed, HyperCubeBoundaryMarkers.left.value, None))
         self._bcs.append((BCType.constant_component,
                           HyperCubeBoundaryMarkers.right.value, 0, 0.1))
     elif self._bc_type == "pointwise":
         gamma01 = PointSubDomain((0.0, ) * self._space_dim, tol=1e-10)
         gamma02 = dlfn.CompiledSubDomain("near(x[0], 0.0)")
         self._bcs.append((BCType.fixed_pointwise, gamma01, None))
         self._bcs.append(
             (BCType.fixed_component_pointwise, gamma02, 0, None))
         self._bcs.append((BCType.constant_component,
                           HyperCubeBoundaryMarkers.right.value, 0, 0.1))
def mark_rectangular_subdomain(p0, p1, mesh):
    '''Get markers for a rectangular subdomain.

    Parameters
    ----------
    p0 : point-like
        Bottom-left vertex coordinates.
    p1 : point-like
        Top-right vertex coordinates.
    mesh : dolfin.Mesh
        Domain mesh.

    Returns
    -------
    domain_markers : dolfin.MeshFunction
        Domain markers where displacement measurements are known. The subdomain
        is identified with mesh function values equal to 1.

    '''

    SUBDOMAIN_MARKER_ID = 1

    subdomain = dolfin.CompiledSubDomain(
        "x[0] > x0 && x[0] < x1 && x[1] > y0 && x[1] < y1",
        x0=p0[0], y0=p0[1], x1=p1[0], y1=p1[1])

    subdomain_markers = dolfin.MeshFunction('size_t',
        mesh, dim=mesh.topology().dim(), value=0)

    subdomain.mark(subdomain_markers, SUBDOMAIN_MARKER_ID)

    return subdomain_markers, SUBDOMAIN_MARKER_ID
Esempio n. 11
0
    def test_to_DG0_subdomain(self):
        mesh = df.UnitSquareMesh(4, 4)
        cell_f = df.MeshFunction('size_t', mesh, 2, 0)
        df.CompiledSubDomain('x[0] < 0.5 + DOLFIN_EPS').mark(cell_f, 1)

        submesh = EmbeddedMesh(cell_f, 1)

        transfer = SubMeshTransfer(mesh, submesh)

        V = df.FunctionSpace(mesh, 'DG', 0)
        Vsub = df.FunctionSpace(submesh, 'DG', 0)

        to_Vsub = transfer.compute_map(Vsub, V, strict=True)
        # Set degree 0 to get the quad order right
        f = df.Expression('x[0] + 2*x[1]', degree=0)

        fV = df.interpolate(f, V)
        fsub = df.Function(Vsub)

        to_Vsub(fsub, fV)

        error = df.inner(fsub - f, fsub - f)*df.dx(domain=submesh)
        error = df.sqrt(abs(df.assemble(error)))

        self.assertTrue(error < 1E-13)
Esempio n. 12
0
    def test_to_DG0(self):
        subdomains = (df.CompiledSubDomain('near(x[0], 0.5)'), df.DomainBoundary())
        
        for subd in subdomains: 
            mesh = df.UnitCubeMesh(4, 4, 4)
            facet_f = df.MeshFunction('size_t', mesh, 2, 0)
            subd.mark(facet_f, 1)
                
            submesh = EmbeddedMesh(facet_f, 1)

            transfer = SubMeshTransfer(mesh, submesh)

            V = df.FunctionSpace(mesh, 'Discontinuous Lagrange Trace', 0)
            Vsub = df.FunctionSpace(submesh, 'DG', 0)
                
            to_Vsub = transfer.compute_map(Vsub, V, strict=False)
            # Set degree 0 to get the quad order right
            f = df.Expression('x[0] + 2*x[1] - x[2]', degree=0)
                
            fV = df.interpolate(f, V)
            fsub = df.Function(Vsub)
                
            to_Vsub(fsub, fV)
                
            error = df.inner(fsub - f, fsub - f)*df.dx(domain=submesh)
            error = df.sqrt(abs(df.assemble(error)))
                
            self.assertTrue(error < 1E-13)
Esempio n. 13
0
	def __init__(self, center, radius, *, maxh = 1., eps = csg_eps):
		segments = max(int(4*radius/maxh), 32)
		eps *= radius
		super().__init__(mshr.Circle(dolfin.Point(*center), radius, segments), csg_boundaries = [
			dolfin.CompiledSubDomain(
				'on_boundary && near((x[0]-c0)*(x[0]-c0) + (x[1]-c1)*(x[1]-c1), rr, eps)',
				c0 = center[0], c1 = center[1], rr = radius * radius, eps = eps
			)
		])
Esempio n. 14
0
    def union(domains, A=inner_size, tol=1E-10):
        def body(domains):
            if isinstance(domains, str):
                if domains:
                    return '( %s )' % domains
                else:
                    return ''
            else:
                return ' || '.join(map(body, domains))

        return df.CompiledSubDomain(body(domains), A=A, tol=tol)