def test_manifold_point_search(): # Simple two-triangle surface in 3d vertices = [(0.0, 0.0, 1.0), (1.0, 1.0, 1.0), (1.0, 0.0, 0.0), (0.0, 1.0, 0.0)] cells = [(0, 1, 2), (0, 1, 3)] mesh = Mesh(MPI.comm_world, CellType.Type.triangle, numpy.array(vertices, dtype=numpy.float64), numpy.array(cells, dtype=numpy.int32), [], cpp.mesh.GhostMode.none) bb = mesh.bounding_box_tree() p = Point(0.5, 0.25, 0.75) assert bb.compute_first_entity_collision(p, mesh) == 0 p = Point(0.25, 0.5, 0.75) assert bb.compute_first_entity_collision(p, mesh) == 1
def create_slice(basemesh, point, normal, closest_region=False, crinkle_clip=False): """Create a slicemesh from a basemesh. :param basemesh: Mesh to slice :param point: Point in slicing plane :param normal: Normal to slicing plane :param closest_region: Set to True to extract disjoint region closest to specified point :param crinkle_clip: Set to True to return mesh of same topological dimension as basemesh .. note:: Only 3D-meshes currently supported for slicing. .. warning:: Slice-instances are intended for visualization only, and may produce erronous results if used for computations. """ assert basemesh.geometry().dim() == 3, "Can only slice 3D-meshes." P = np.array([point[0], point[1], point[2]], dtype=np.double) # Create unit normal n = np.array([normal[0],normal[1], normal[2]]) n = n/np.linalg.norm(n) #self.n = Constant((n[0], n[1], n[2])) # Calculate the distribution of vertices around the plane # (sign of np.dot(p-P, n) determines which side of the plane p is on) vsplit = np.dot(basemesh.coordinates()-P, n) # Count each cells number of vertices on the "positive" side of the plane # Only cells with vertices on both sides of the plane intersect the plane operator = np.less npos = np.sum(vsplit[basemesh.cells()] < 0, 1) intersection_cells = basemesh.cells()[(npos > 0) & (npos < 4)] if len(intersection_cells) == 0: # Try to put "zeros" on other side of plane # FIXME: handle cells with vertices exactly intersecting the plane in a more robust manner. operator = np.greater npos = np.sum(vsplit[basemesh.cells()] > 0, 1) #cell_indices = (npos > 0) & (npos < 4) intersection_cells = basemesh.cells()[(npos > 0) & (npos < 4)] if crinkle_clip: cf = CellFunction("size_t", basemesh) cf.set_all(0) cf.array()[(npos>0) & (npos<4)] = 1 mesh = create_submesh(basemesh, cf, 1) else: def add_cell(cells, cell): # Split cell into triangles for i in xrange(len(cell)-2): cells.append(cell[i:i+3]) cells = [] index = 0 indexes = {} for c in intersection_cells: a = operator(vsplit[c], 0) positives = c[np.where(a==True)[0]] negatives = c[np.where(a==False)[0]] cell = [] for pp_ind in positives: pp = basemesh.coordinates()[pp_ind] for pn_ind in negatives: pn = basemesh.coordinates()[pn_ind] if (pp_ind, pn_ind) not in indexes: # Calculate intersection point with the plane d = np.dot(P-pp, n)/np.dot(pp-pn, n) ip = pp+(pp-pn)*d indexes[(pp_ind, pn_ind)] = (index, ip) index += 1 cell.append(indexes[(pp_ind, pn_ind)][0]) add_cell(cells, cell) MPI.barrier(mpi_comm_world()) # Assign global indices # TODO: Assign global indices properly dist = distribution(index) global_idx = sum(dist[:MPI.rank(mpi_comm_world())]) vertices = {} for idx, p in indexes.values(): vertices[idx] = (global_idx, p) global_idx += 1 global_num_cells = MPI.sum(mpi_comm_world(), len(cells)) global_num_vertices = MPI.sum(mpi_comm_world(), len(vertices)) mesh = Mesh() # Return empty mesh if no intersections were found if global_num_cells == 0: mesh_editor = MeshEditor() mesh_editor.open(mesh, "triangle", 2, 3) mesh_editor.init_vertices(0) mesh_editor.init_cells(0) mesh_editor.close() else: # Distribute mesh if empty on any processors cells, vertices = distribute_meshdata(cells, vertices) # Build mesh mesh_editor = MeshEditor() mesh_editor.open(mesh, "triangle", 2, 3) mesh_editor.init_vertices(len(vertices)) mesh_editor.init_cells(len(cells)) for index, cell in enumerate(cells): mesh_editor.add_cell(index, cell[0], cell[1], cell[2]) for local_index, (global_index, coordinates) in vertices.items(): mesh_editor.add_vertex_global(int(local_index), int(global_index), coordinates) mesh_editor.close() mesh.topology().init(0, len(vertices), global_num_vertices) mesh.topology().init(2, len(cells), global_num_cells) if closest_region and mesh.size_global(0) > 0: assert MPI.size(mpi_comm_world())==1, "Extract closest region does not work in parallel" regions = compute_connectivity(mesh) i,d = mesh.bounding_box_tree().compute_closest_entity(Point(P)) if d == MPI.min(mesh.mpi_comm(), d): v = regions[int(i)] else: v = 0 v = MPI.max(mesh.mpi_comm(), v) mesh = create_submesh(mesh, regions, v) return mesh
class FBVP: def __init__(self, mesh_name, parameters, alpha_range=None): # LOAD MESH AND PARAMETERS self.parameters = parameters self.mesh_name = mesh_name if not alpha_range: self.alpha_range = parameters.alpha_range else: self.alpha_range = alpha_range mesh_path = self.parameters.get_mesh_path() self.mesh = Mesh() with XDMFFile(mesh_path) as f: f.read(self.mesh) print(f'Mesh size= {self.mesh.hmax()}') # dimension of approximation space self.dim = len(self.mesh.coordinates()) print(f'Dimension of solution space is {self.dim}') self.V = FunctionSpace(self.mesh, 'CG', 1) # CG = P1 self.coords = self.mesh.coordinates()[dof_to_vertex_map(self.V)] self.T = self.parameters.T # final time self.w = TrialFunction(self.V) self.u = TestFunction(self.V) ####################################################################### # CONTROL SET CREATION self.control_set = np.linspace(self.alpha_range[0], self.alpha_range[1], self.parameters.control_set_size) self.control_set_size = len(self.control_set) print(f'Discretized control set has size {self.control_set_size}') ####################################################################### # BOUNDARY CONDITIONS parameters.set_boundary_conditions(self.mesh) self.boundary_markers = MeshFunction('size_t', self.mesh, 1) self.boundary_markers.set_all(4) # pylint: disable=no-member for i, omega in self.parameters.omegas.items(): omega.mark(self.boundary_markers, i) self.ds = Measure('ds', domain=self.mesh, subdomain_data=self.boundary_markers) self.dirichlet_bcs = [ DirichletBC(self.V, parameters.RHS_bound[j], self.boundary_markers, j) for j in self.parameters.regions["Dirichlet"] ] # Get indices of dirichlet and robin dofs self.dirichlet_nodes_list = set() self.dirichlet_nodes_dict = {} for j in self.parameters.regions["Dirichlet"]: bc = DirichletBC(self.V, Constant(0), self.boundary_markers, j) self.dirichlet_nodes_list |= set(bc.get_boundary_values().keys()) self.dirichlet_nodes_dict[j] = list( bc.get_boundary_values().keys()) self.robin_nodes_list = set() self.robin_nodes_dict = {} for j in self.parameters.regions["Robin"]: bc = DirichletBC(self.V, Constant(0), self.boundary_markers, j) self.robin_nodes_list |= set(bc.get_boundary_values().keys()) self.robin_nodes_dict[j] = list(bc.get_boundary_values().keys()) bc = DirichletBC(self.V, Constant(0), 'on_boundary') self.boundary_nodes_list = bc.get_boundary_values().keys() self.robint_nodes_list = set() self.robint_nodes_dict = {} for j in self.parameters.regions["RobinTime"]: bc = DirichletBC(self.V, Constant(0), self.boundary_markers, j) self.robint_nodes_list |= set(bc.get_boundary_values().keys()) self.robint_nodes_dict[j] = list(bc.get_boundary_values().keys()) ####################################################################### # ASSEMBLY time_start = time.process_time() self.assemble_diagonal_matrix() # auxilliary generic diagonal matrix # used for vector*matrix multiplication of dolfin matrices self.assemble_lumpedmm() # lumped mass matrix # which serves the role of identity operator self.assemble_laplacian() # discrete laplacian self.ad_data_path = f'out/{self.parameters.experiment}' Path(self.ad_data_path).mkdir(parents=True, exist_ok=True) self.timesteps = self.parameters.get_number_of_timesteps() self.assemble_HJBe() # assembly of explicit operators self.assemble_HJBi() # assembly of implicit operators self.assemble_RHS() # assembly of forcing term print('Final time assembly complete') print(f'Assembly took {time.process_time() - time_start} seconds') print('===========================================================') def assemble_diagonal_matrix(self): print("Assembling auxilliary diagonal matrix") """ Operator assembled to get the right sparameterssity pattern (non-zero terms can only exist on diagonal) """ mesh3 = UnitIntervalMesh(self.dim) V3 = FunctionSpace(mesh3, "DG", 0) wid = TrialFunction(V3) uid = TestFunction(V3) self.diag_matrix = assemble(uid * wid * dx) self.diag_matrix.zero() def assemble_lumpedmm(self): """ Assembly lumped mass matrix - equal to 0 on robin boundary since there is no time derivative there. """ print("Assembling lumped mass matrix") mass_form = self.w * self.u * dx mass_action_form = action(mass_form, Constant(1)) self.MM_terms = assemble(mass_action_form) for n in self.robint_nodes_list: self.MM_terms[n] = 1.0 for n in self.robin_nodes_list: self.MM_terms[n] = 0.0 self.mass_matrix = assemble(mass_form) self.mass_matrix.zero() self.mass_matrix.set_diagonal(self.MM_terms) self.scipy_mass_matrix = toscipy(self.mass_matrix) def assemble_laplacian(self): print("Assembling laplacians") # laplacian discretisation self.laplacian = assemble(dot(grad(self.w), grad(self.u)) * dx) def assemble_HJBe(self, t=None): """ Assembly explicit operator for every control in the control set, then apply artificial diffusion to all of them. Note that artificial diffusion is calculated differently on the boundary nodes. """ self.explicit_matrices = np.empty(self.control_set_size, dtype=object) self.explicit_diffusion = np.empty([self.control_set_size, self.dim]) diagonal_vector = Vector(self.mesh.mpi_comm(), self.dim) global_min_timestep = float('inf') # Create explicit operator for each control in control set for k, alpha in enumerate(self.control_set): if k % 10 == 0: print(f'Assembling explicit matrix under control {k}' f' out of {self.control_set_size}') # coefficients in the interior advection_x = self.parameters.adv_x(alpha) advection_y = self.parameters.adv_y(alpha) reaction = self.parameters.lin(alpha) if t is not None: advection_x.t = t advection_y.t = t reaction.t = t # Discretize PDE (set values on boundary rows to zero) b = np.array([advection_x, advection_y]) E_interior_form = (np.dot(b, grad(self.w)) + reaction * self.w) * self.u * dx explicit_matrix = assemble(E_interior_form) set_zero_rows(explicit_matrix, self.boundary_nodes_list) # Calculate diffusion necessary to make explicit operator monotone min_diffusion = np.zeros(explicit_matrix.size(0)) for rows, row_num in getrows(explicit_matrix, self.laplacian, ignore=self.boundary_nodes_list): min_diffusion[row_num] = calc_ad(rows, row_num) self.explicit_diffusion[k] = min_diffusion discrete_diffusion = apply_ad(self.laplacian, min_diffusion) explicit_matrix += discrete_diffusion for j in self.parameters.regions['RobinTime']: self.set_directional_derivative( explicit_matrix, region=j, nodes=self.robint_nodes_dict[j], control=alpha, time=t) explicit_matrix.get_diagonal(diagonal_vector) current_min_timestep = get_min_timestep( diagonal_vector, self.MM_terms, self.dirichlet_nodes_list | self.robin_nodes_list) global_min_timestep = min(current_min_timestep, global_min_timestep) self.explicit_matrices[k] = toscipy(explicit_matrix) ####################################################################### min_timesteps = int(self.T / global_min_timestep) + 1 if not self.timesteps or self.timesteps < min_timesteps: self.timesteps = min_timesteps try: filename = (f'meshes/{self.parameters.domain}/' f'Mvalues-{self.parameters.experiment}.json') with open(filename, 'r') as f: min_timesteps_dict = json.load(f) except FileNotFoundError: min_timesteps_dict = {} min_timesteps_dict[self.parameters.mesh_name] = self.timesteps with open(filename, 'w') as f: json.dump(min_timesteps_dict, f) self.timestep_size = self.T / self.timesteps # time step size self.parameters.calculate_save_interval() self.explicit_matrices = self.timestep_size * self.explicit_matrices - \ np.repeat(self.scipy_mass_matrix, self.control_set_size) print('Checking if the explicit operators satisfy' ' monotonicity conditions') for explicit_matrix in self.explicit_matrices: explicit_check(explicit_matrix, self.dirichlet_nodes_list) def assemble_RHS(self, t=None): """Assemble right hand side of the FBVP """ print('Assembling RHS') self.forcing_terms = np.empty([self.control_set_size, self.dim]) for i, alpha in enumerate(self.control_set): rhs = self.parameters.RHSt(alpha) if t is not None: rhs.t = t # Initialise forcing term F = np.array(assemble(rhs * self.u * dx)[:]) for j in self.parameters.regions['RobinTime']: rhs = self.parameters.RHS_bound[j](alpha) if t is not None: rhs.t = t bc = DirichletBC(self.V, rhs, self.boundary_markers, j) vals = bc.get_boundary_values() F[list(vals.keys())] = list(vals.values()) for j in self.parameters.regions['Robin']: rhs = self.parameters.RHS_bound[j](alpha) if t is not None: rhs.t = t bc = DirichletBC(self.V, rhs, self.boundary_markers, j) vals = bc.get_boundary_values() F[list(vals.keys())] = list(vals.values()) self.forcing_terms[i] = self.timestep_size * F def assemble_HJBi(self, t=None): """ Assembly matrix discretizing second order terms after diffusion moved to the explicit operator is subtracted. Whenever amount of diffusion used to make some row of an explicit operator monotonic exceeds the amount of natural diffusion at that node we call it artificial diffusion. In such case, this row of the implicit operator is multiplied by zero """ print('Assembling implicit operators') self.implicit_matrices = [] remaining_diffusion = Function(self.V) max_art_dif = 0.0 max_art_dif_loc = None diffusion_matrix = self.diag_matrix.copy() for explicit_diffusion, alpha in \ zip(self.explicit_diffusion, self.control_set): diffusion = self.parameters.diffusion(alpha) if t is not None: diffusion.t = t diff = interpolate(diffusion, self.V).vector() if not np.all(diff >= 0): raise Exception("Choose non-negative diffusion") diff_vec = np.array([ diff[i] if i not in self.boundary_nodes_list else 0.0 for i in range(self.dim) ]) artificial_diffusion = explicit_diffusion - diff_vec if np.amax(artificial_diffusion) > max_art_dif: max_art_dif = np.amax(artificial_diffusion) max_art_dif_loc = self.coords[np.argmax(artificial_diffusion)] # discretise second order terms remaining_diffusion.vector()[:] = np.maximum( -artificial_diffusion, [0] * self.dim) diffusion_matrix.set_diagonal(remaining_diffusion.vector()) implicit_matrix = matmult(diffusion_matrix, self.laplacian) for j in self.parameters.regions['Robin']: self.set_directional_derivative(implicit_matrix, region=j, nodes=self.robin_nodes_dict[j], control=alpha, time=t) self.implicit_matrices.append(self.timestep_size * implicit_matrix + self.mass_matrix) self.scipy_implicit_matrices = [ toscipy(mat) for mat in self.implicit_matrices ] print('Checking if the implicit operators satisfy' ' monotonicity conditions') for implicit_matrix in self.scipy_implicit_matrices: implicit_check(implicit_matrix) with open(self.ad_data_path + '/ad.txt', 'a') as f: time_str = f' at time {t}\n' if t is not None else '\n' f.write(f'For mesh {self.mesh_name} max value of artificial' ' diffusion coefficient was' f' {max_art_dif} at {max_art_dif_loc}' + time_str) def set_directional_derivative(self, operator, region, nodes, control, time=None): if region in self.parameters.regions['Robin']: adv_x = self.parameters.robin_adv_x[region](control) adv_y = self.parameters.robin_adv_y[region](control) lin = self.parameters.robin_lin[region](control) elif region in self.parameters.regions['RobinTime']: adv_x = self.parameters.robint_adv_x[region](control) adv_y = self.parameters.robint_adv_y[region](control) lin = self.parameters.robint_lin[region](control) if time is not None: adv_x.t = time adv_y.t = time lin.t = time b = (interpolate(adv_x, self.V), interpolate(adv_y, self.V)) c = interpolate(lin, self.V) for n in nodes: # node coordinates x = self.coords[n] # evaluate advection at robin node b_x = np.array([b[0].vector()[n], b[1].vector()[n]]) # denominator used to calculate directional derivative if np.linalg.norm(b_x) > 1: lamb = 0.1 * self.mesh.hmin() / np.linalg.norm(b_x) else: lamb = 0.1 * self.mesh.hmin() # position of first node of the stencil x_prev = x - lamb * b_x # Find cell containing first node of stencil and get its # dof/vertex coordinates try: cell_ind = self.mesh.bounding_box_tree( ).compute_entity_collisions(Point(x_prev))[0] except IndexError: i = 16 while i > 2: # sometimes Fenics does not detect nodes if boundary is # parallel to the boundary advection due to rounding errors # so try different precisions just to be sure try: cell_ind = self.mesh.bounding_box_tree( ).compute_entity_collisions(Point(np.round(x_prev, i)))[0] break except IndexError: i -= 1 else: raise Exception( "Boundary advection outside tangential cone") cell_vertices = self.mesh.cells()[cell_ind] cell_dofs = vertex_to_dof_map(self.V)[cell_vertices] cell_coords = self.mesh.coordinates()[cell_vertices] # calculate weigth of each vertex in the cell (using # barycentric coordinates) A = np.vstack((cell_coords.T, np.ones(3))) rhs = np.append(x_prev, np.ones(1)) weights = np.linalg.solve(A, rhs) weights = [w if w > 1e-14 else 0 for w in weights] dof_to_weight = dict(zip(cell_dofs, weights)) # calculate directional derivative at each node using # weights to interpolate value of numerical solution at # x_prev row = operator.getrow(n) indices = row[0] data = row[1] for dof in cell_dofs: pos = np.where(indices == dof)[0][0] if dof != n: data[pos] = -dof_to_weight[dof] / lamb else: c_n = c.vector()[dof] # make sure reaction term is positive adding artificial # constant if necessary if region in self.parameters.regions['Robin']: c_n = max(c_n, min(lamb, 1E-8)) data[pos] = (1 - dof_to_weight[dof]) / lamb + c_n operator.set([data], [n], indices) operator.apply('insert')