Esempio n. 1
0
def block_solve(block_A, block_x, block_b, linear_solver="default"):
    assert isinstance(block_A, GenericBlockMatrix)
    assert isinstance(block_x, GenericBlockVector)
    assert isinstance(block_b, GenericBlockVector)
    # Solve
    solver = PETScLUSolver(linear_solver)
    solver.solve(block_A, block_x, block_b)
    # Keep subfunctions up to date
    block_x.block_function().apply("to subfunctions")
Esempio n. 2
0
def test_lu_cholesky():
    """Test that PETScLUSolver selects LU or Cholesky solver based on
    symmetry of matrix operator.

    """

    from petsc4py import PETSc

    mesh = UnitSquareMesh(mpi_comm_world(), 12, 12)
    V = FunctionSpace(mesh, "Lagrange", 1)
    u, v = TrialFunction(V), TestFunction(V)
    A = PETScMatrix(mesh.mpi_comm())
    assemble(Constant(1.0)*u*v*dx, tensor=A)

    # Check that solver type is LU
    solver = PETScLUSolver(mesh.mpi_comm(), A, "petsc")
    pc_type = solver.ksp().getPC().getType()
    assert pc_type == "lu"

    # Set symmetry flag
    A.mat().setOption(PETSc.Mat.Option.SYMMETRIC, True)

    # Check symmetry flags
    symm = A.mat().isSymmetricKnown()
    assert symm[0] == True
    assert symm[1] == True

    # Check that solver type is Cholesky since matrix has now been
    # marked as symmetric
    solver = PETScLUSolver(mesh.mpi_comm(), A, "petsc")
    pc_type = solver.ksp().getPC().getType()
    assert pc_type == "cholesky"

    # Re-assemble, which resets symmetry flag
    assemble(Constant(1.0)*u*v*dx, tensor=A)
    solver = PETScLUSolver(mesh.mpi_comm(), A, "petsc")
    pc_type = solver.ksp().getPC().getType()
    assert pc_type == "lu"
Esempio n. 3
0
def test_lu_cholesky():
    """Test that PETScLUSolver selects LU or Cholesky solver based on
    symmetry of matrix operator.

    """

    from petsc4py import PETSc

    mesh = UnitSquareMesh(MPI.comm_world, 12, 12)
    V = FunctionSpace(mesh, "Lagrange", 1)
    u, v = TrialFunction(V), TestFunction(V)
    A = PETScMatrix(mesh.mpi_comm())
    assemble(Constant(1.0)*u*v*dx, tensor=A)

    # Check that solver type is LU
    solver = PETScLUSolver(mesh.mpi_comm(), A, "petsc")
    pc_type = solver.ksp().getPC().getType()
    assert pc_type == "lu"

    # Set symmetry flag
    A.mat().setOption(PETSc.Mat.Option.SYMMETRIC, True)

    # Check symmetry flags
    symm = A.mat().isSymmetricKnown()
    assert symm[0] == True
    assert symm[1] == True

    # Check that solver type is Cholesky since matrix has now been
    # marked as symmetric
    solver = PETScLUSolver(mesh.mpi_comm(), A, "petsc")
    pc_type = solver.ksp().getPC().getType()
    assert pc_type == "cholesky"

    # Re-assemble, which resets symmetry flag
    assemble(Constant(1.0)*u*v*dx, tensor=A)
    solver = PETScLUSolver(mesh.mpi_comm(), A, "petsc")
    pc_type = solver.ksp().getPC().getType()
    assert pc_type == "lu"
Esempio n. 4
0
 def solve(self):
     solver = PETScLUSolver(self._linear_solver)
     solver.solve(self.lhs, self.solution.vector(), self.rhs)
     if self.monitor is not None:
         self.monitor(self.solution)
Esempio n. 5
0
 def solve(self):
     solver = PETScLUSolver(self._linear_solver)
     solver.solve(self.lhs, self.solution.vector(), self.rhs)
     return self.solution