Esempio n. 1
0
def of2dmcs(img1: np.array, img2: np.array, alpha0: float, alpha1: float,
            beta0: float, beta1: float) -> (np.array, np.array):
    """Computes the L2-H1 optical flow for a 2D two-channel image sequence and
    source for the second channel (optical flow 2d multi-channel with source).

    Takes a two-dimensional image sequence and returns a minimiser of the
    Horn-Schunck functional with source and with spatio-temporal
    regularisation for both velocity and source.

    Args:
        img1 (np.array): A 2D image sequence of shape (t, m, n), where t is the
                         number of time steps and (n, n) is the number of
                         pixels.
        img2 (np.array): A 2D image sequence of shape (t, m, n), where t is the
                         number of time steps and (n, n) is the number of
                         pixels.
        alpha0 (float):  The spatial regularisation parameter.
        alpha1 (float):  The temporal regularisation parameter.

    Returns:
        v (np.array): A velocity array of shape (t, m, n, 2).
        k (np.array): A source array of shape (t, m, n).

    """
    # Create mesh.
    [t, m, n] = img1.shape
    mesh = UnitCubeMesh(t-2, m-1, n-1)

    # Define function space and functions.
    V = FunctionSpace(mesh, 'CG', 1)
    W = VectorFunctionSpace(mesh, 'CG', 1, dim=3)
    v1, v2, k = TrialFunctions(W)
    w1, w2, w3 = TestFunctions(W)

    # Convert image to function.
    f1, f2 = Function(V), Function(V)
    f1.vector()[:] = dh.imgseq2funvec(img1[0:-1])
    f2.vector()[:] = dh.imgseq2funvec(img2[0:-1])

    # Define function to compute temporal derivative.
    def time_deriv(img: np.array) -> Function:
        # Evaluate function at vertices.
        mc = mesh.coordinates().reshape((-1, 3))
        hx, hy, hz = 1./(t-2), 1./(m-1), 1./(n-1)
        x = np.array(mc[:, 0]/hx, dtype=int)
        y = np.array(mc[:, 1]/hy, dtype=int)
        z = np.array(mc[:, 2]/hz, dtype=int)

        # Map pixel values to vertices.
        d2v = dof_to_vertex_map(V)

        # Compute derivative wrt. time.
        imgt = img[1:] - img[0:-1]
        ftv = imgt[x, y, z]

        # Create function.
        ft = Function(V)
        ft.vector()[:] = ftv[d2v]
        return ft

    # Compute temporal derivatives.
    f1t = time_deriv(img1)
    f2t = time_deriv(img2)

    # Define derivatives of data.
    f1x, f1y = f1.dx(1), f1.dx(2)
    f2x, f2y = f2.dx(1), f2.dx(2)

    # Define weak formulation.
    A = f1x*(f1x*v1 + f1y*v2)*w1*dx + f2x*(f2x*v1 + f2y*v2 - k)*w1*dx \
        + f1y*(f1x*v1 + f1y*v2)*w2*dx + f2y*(f2x*v1 + f2y*v2 - k)*w2*dx \
        - (f2x*v1 + f2y*v2 - k)*w3*dx \
        + alpha0*v1.dx(1)*w1.dx(1)*dx + alpha0*v1.dx(2)*w1.dx(2)*dx \
        + alpha1*v1.dx(0)*w1.dx(0)*dx \
        + alpha0*v2.dx(1)*w2.dx(1)*dx + alpha0*v2.dx(2)*w2.dx(2)*dx \
        + alpha1*v2.dx(0)*w2.dx(0)*dx \
        + beta0*k.dx(1)*w3.dx(1)*dx + beta0*k.dx(2)*w3.dx(2)*dx \
        + beta1*k.dx(0)*w3.dx(0)*dx
    b = - f1x*f1t*w1*dx - f2x*f2t*w1*dx \
        - f1y*f1t*w2*dx - f2y*f2t*w2*dx \
        + f2t*w3*dx

    # Compute solution.
    v = Function(W)
    solve(A == b, v, [], solver_parameters={"linear_solver": "cg"})

    # Split solution into functions.
    v1, v2, k = v.split(deepcopy=True)

    # Convert back to arrays.
    v1 = dh.funvec2imgseq(v1.vector().get_local(), t-1, m, n)
    v2 = dh.funvec2imgseq(v2.vector().get_local(), t-1, m, n)
    k = dh.funvec2imgseq(k.vector().get_local(), t-1, m, n)
    return (np.stack((v1, v2), axis=3), k)
Esempio n. 2
0
def cmscr1dnewton(img: np.array, alpha0: float, alpha1: float, alpha2: float,
                  alpha3: float, beta: float) \
                  -> (np.array, np.array, float, float, bool):
    """Same as cmscr1d but doesn't use FEniCS Newton method.

    Args:
        img (np.array): A 1D image sequence of shape (m, n), where m is the
                        number of time steps and n is the number of pixels.
        alpha0 (float): The spatial regularisation parameter for v.
        alpha1 (float): The temporal regularisation parameter for v.
        alpha2 (float): The spatial regularisation parameter for k.
        alpha3 (float): The temporal regularisation parameter for k.
        beta (float): The parameter for convective regularisation.

    Returns:
        v: A velocity array of shape (m, n).
        k: A source array of shape (m, n).
        res (float): The residual.
        fun (float): The function value.
        converged (bool): True if Newton's method converged.

    """
    # Create mesh.
    [m, n] = img.shape
    mesh = UnitSquareMesh(m - 1, n - 1)

    # Define function space and functions.
    W = VectorFunctionSpace(mesh, 'CG', 1, dim=2)
    w = Function(W)
    v, k = split(w)
    w1, w2 = TestFunctions(W)

    # Convert image to function.
    V = FunctionSpace(mesh, 'CG', 1)
    f = Function(V)
    f.vector()[:] = dh.img2funvec(img)

    # Define derivatives of data.
    ft = Function(V)
    ftv = np.diff(img, axis=0) * (m - 1)
    ftv = np.concatenate((ftv, ftv[-1, :].reshape(1, n)), axis=0)
    ft.vector()[:] = dh.img2funvec(ftv)

    fx = Function(V)
    fxv = np.gradient(img, 1 / (n - 1), axis=1)
    fx.vector()[:] = dh.img2funvec(fxv)

    # Define weak formulation.
    F = - (ft + fx*v + f*v.dx(1) - k) * (fx*w1 + f*w1.dx(1))*dx \
        - alpha0*v.dx(1)*w1.dx(1)*dx - alpha1*v.dx(0)*w1.dx(0)*dx \
        - beta*k.dx(1)*(k.dx(0) + k.dx(1)*v)*w1*dx \
        + (ft + fx*v + f*v.dx(1) - k)*w2*dx \
        - alpha2*k.dx(1)*w2.dx(1)*dx - alpha3*k.dx(0)*w2.dx(0)*dx \
        - beta*(k.dx(0)*w2.dx(0) + k.dx(1)*v*w2.dx(0)
                + k.dx(0)*v*w2.dx(1) + k.dx(1)*v*v*w2.dx(1))*dx

    # Define derivative.
    dv, dk = TrialFunctions(W)
    J = - (fx*dv + f*dv.dx(1) - dk)*(fx*w1 + f*w1.dx(1))*dx \
        - alpha0*dv.dx(1)*w1.dx(1)*dx - alpha1*dv.dx(0)*w1.dx(0)*dx \
        - beta*(k.dx(1)*(dk.dx(0) + dk.dx(1)*v) + k.dx(1)**2*dv
                + dk.dx(1)*(k.dx(0) + k.dx(1)*v))*w1*dx \
        + (fx*dv + f*dv.dx(1) - dk)*w2*dx \
        - alpha2*dk.dx(1)*w2.dx(1)*dx - alpha3*dk.dx(0)*w2.dx(0)*dx \
        - beta*(dv*k.dx(1) + dk.dx(0) + v*dk.dx(1))*w2.dx(0)*dx \
        - beta*(dv*k.dx(0) + 2*v*dv*k.dx(1) + v*dk.dx(0)
                + v*v*dk.dx(1))*w2.dx(1)*dx

    # Alternatively, use automatic differentiation.
    # J = derivative(F, w)

    # Define algorithm parameters.
    tol = 1e-10
    maxiter = 100

    # Define increment.
    dw = Function(W)

    # Run Newton iteration.
    niter = 0
    eps = 1
    res = 1
    while res > tol and niter < maxiter:
        niter += 1

        # Solve for increment.
        solve(J == -F, dw)

        # Update solution.
        w.assign(w + dw)

        # Compute norm of increment.
        eps = dw.vector().norm('l2')

        # Compute norm of residual.
        a = assemble(F)
        res = a.norm('l2')

        # Print statistics.
        print("Iteration {0} eps={1} res={2}".format(niter, eps, res))

    # Split solution.
    v, k = w.split(deepcopy=True)

    # Evaluate and print residual and functional value.
    res = abs(ft + fx * v + f * v.dx(1) - k)
    fun = 0.5 * (res**2 + alpha0 * v.dx(1)**2 + alpha1 * v.dx(0)**2 +
                 alpha2 * k.dx(1)**2 + alpha3 * k.dx(0)**2 + beta *
                 (k.dx(0) + k.dx(1) * v)**2)
    print('Res={0}, Func={1}'.format(assemble(res * dx), assemble(fun * dx)))

    # Convert back to array.
    vel = dh.funvec2img(v.vector().get_local(), m, n)
    k = dh.funvec2img(k.vector().get_local(), m, n)
    return vel, k, assemble(res * dx), assemble(fun * dx), res > tol